QUANTUM CORRELATIONS UNDER RESTRICTED TRANSFER OF INFORMATION

Jonatan Bohr Brask
DTU Physics

QUANTUM CORRELATIONS UNDER RESTRICTED TRANSFER OF INFORMATION

Jonatan Bohr Brask
DTU Physics

A. Tavakoli, E. Zambrini Cruzeiro, JBB, N. Gisin, N. Brunner

arXiv:1909.05656

In any physical theory with a notion of distinct observables, we can look at correlations....

In any physical theory with a notion of distinct observables, we can look at correlations....

In any physical theory with a notion of distinct observables, we can look at correlations....

- Enables comparisons on an abstract, "black-box" level.
 - → can compare very different theories.

In any physical theory with a notion of distinct observables, we can look at correlations....

- Enables comparisons on an abstract, "black-box" level.
 → can compare very different theories.
- Enables testing using observed data with very few assumptions.

In any physical theory with a notion of distinct observables, we can look at correlations....

- Enables comparisons on an abstract, "black-box" level.
 → can compare very different theories.
- Enables testing using observed data with very few assumptions.

In any physical theory with a notion of distinct observables, we can look at correlations....

- Enables comparisons on an abstract, "black-box" level.
 → can compare very different theories.
- Enables testing using observed data with very few assumptions.

In any physical theory with a notion of distinct observables, we can look at correlations....

- Enables comparisons on an abstract, "black-box" level.
 → can compare very different theories.
- Enables testing using observed data with very few assumptions.

Can study relation between communication and correlations in prepare-and-measure setups.

Limiting communication → constraints on correlations.

Can study relation between communication and correlations in prepare-and-measure setups.

Limiting communication \rightarrow constraints on correlations.

To compare causal behaviour of different theories (e.g. classical / quantum / post-quantum), need to impose constraints that make sense in both / all worlds.

Can study relation between communication and correlations in prepare-and-measure setups.

Limiting communication \rightarrow constraints on correlations.

To compare causal behaviour of different theories (e.g. classical / quantum / post-quantum), need to impose constraints that make sense in both / all worlds.

Can study relation between communication and correlations in prepare-and-measure setups.

Limiting communication \rightarrow constraints on correlations.

To compare causal behaviour of different theories (e.g. classical / quantum / post-quantum), need to impose constraints that make sense in both / all worlds.

Bounded message dimension.

• Limit number of distinguishable states.

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

• Limit information content w/o restricting size.

Chaves et al. (2015), Zhu (2016)

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

- Limit information content w/o restricting size.
- Can also be defined quite generally.

Chaves et al. (2015), Zhu (2016)

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

- Limit information content w/o restricting size.
- Can also be defined quite generally.
- Applies to infinite-dim. physical systems.

Chaves et al. (2015), Zhu (2016)

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

- Limit information content w/o restricting size.
- Can also be defined quite generally.
- Applies to infinite-dim. physical systems.

Chaves et al. (2015), Zhu (2016)

Bounded state overlap / Bounded message energy

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

- Limit information content w/o restricting size.
- Can also be defined quite generally.
- Applies to infinite-dim. physical systems.

Chaves et al. (2015), Zhu (2016)

Bounded state overlap / Bounded message energy

 $Tr[H\rho_x] \leq \epsilon$

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

- Limit information content w/o restricting size.
- Can also be defined quite generally.
- Applies to infinite-dim. physical systems.

Chaves et al. (2015), Zhu (2016)

Bounded state overlap / Bounded message energy

Target quantum / classical separation.

 $Tr[H\rho_x] \le c$

Bounded message dimension.

- Limit number of distinguishable states.
- Very general can be defined in many theories.
- Not directly measureable
 - → may be hard to justify in the lab

Buhrman et al. (1998), Raz (1999), Gallego et al. (2010)...

Bounded entropy of message distribution.

- Limit information content w/o restricting size.
- Can also be defined quite generally.
- Applies to infinite-dim. physical systems.

Chaves et al. (2015), Zhu (2016)

Bounded state overlap / Bounded message energy

- Target quantum / classical separation.
- Advantageous for optical implementations of "grey-box" (semi-device-independent) QIP applications (e.g. QRNG).

Idea:

Directly limit information about input which can be recovered from message.

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Prob. to guess input w/o message

$$P_g(X) = \max_x \, p_X(x)$$

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Prob. to guess input w/o message

Prob. to guess input w. message

$$P_g(X) = \max_{x} p_X(x) \qquad \qquad P_g(X|\mathcal{E}) = \max_{guess. \ strat.} \sum_{x} p_X(x) p(x_{guess} = x|e_x)$$

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

$$P_g(X) = \max_{x} \, p_X(x)$$

ensemble of messages particular message

Prob. to guess input w/o message
$$P_g(X) = \max_x \, p_X(x) \qquad P_g(X|\mathcal{E}) = \max_{guess.\, strat.} \sum_x p_X(x) p(x_{guess} = x|e_x)$$

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Prob. to guess input w/o message

$$P_g(X) = \max_x \, p_X(x)$$

ensemble of messages particular message

Prob. to guess input w. message
$$P_g(X|\mathcal{E}) = \max_{guess.\ strat.} \sum_x p_X(x) p(x_{guess} = x|e_x)$$

$$= \max_{N_x} \sum_x p_X(x) \mathrm{Tr}[\rho_x N_x]$$

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Prob. to guess input w/o message

$$P_g(X) = \max_{x} \, p_X(x)$$

Uncertainty w/o message

$$H_{min}(X) = -\log_2[P_g(X)]$$

Prob. to guess input w. message $P_g(X|\mathcal{E}) = \max_{guess.\ strat.} \sum_x p_X(x) p(x_{guess} = x|e_x)$ $= \max_{N_x} \sum_{N_x} p_X(x) \text{Tr}[\rho_x N_x]$

ensemble of messages particular message

Uncertainty w. message

$$H_{min}(X|\mathcal{E}) = -\log_2[P_g(X|\mathcal{E})]$$

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Prob. to guess input w/o message

$$P_g(X) = \max_{x} \, p_X(x)$$

Uncertainty w/o message

$$H_{min}(X) = -\log_2[P_g(X)]$$

The information is the difference

$$\mathcal{I}_X(\mathcal{E}) = H_{min}(X) - H_{min}(X|\mathcal{E})$$

nty ensemble of messages particular message $P_{g}(X|\mathcal{E}) = \max_{guess.\ strat.} \sum_{x} p_{X}(x) p(x_{guess} = x|e_{x})$ $= \max_{N_{x}} \sum_{x} p_{X}(x) \mathrm{Tr}[\rho_{x} N_{x}]$

Uncertainty w. message

$$H_{min}(X|\mathcal{E}) = -\log_2[P_g(X|\mathcal{E})]$$

Idea:

Directly limit information about input which can be recovered from message.

Quantify information as change in uncertainty

Prob. to guess input w/o message

$$P_g(X) = \max_x \, p_X(x)$$

Uncertainty w/o message

$$H_{min}(X) = -\log_2[P_g(X)]$$

The information is the difference

$$\mathcal{I}_X(\mathcal{E}) = H_{min}(X) - H_{min}(X|\mathcal{E})$$

Uncertainty w. message

$$H_{min}(X|\mathcal{E}) = -\log_2[P_q(X|\mathcal{E})]$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

$$p(b|x,y) = \sum_{\lambda} p(\lambda) \sum_{m=1}^{d} p_A(m|x,\lambda) p_B(b|m,y,\lambda)$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

can restrict to
$$d$$
 = # inputs can take these deterministic
$$p(b|x,y) = \sum_{\lambda} p(\lambda) \sum_{m=1}^d p_A(m|x,\lambda) p_B(b|m,y,\lambda)$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

can restrict to
$$d$$
 = # inputs
$${\rm can \ take \ these \ deterministic}$$

$$p(b|x,y) = \sum_{\lambda} p(\lambda) \sum_{m=1}^d p_A(m|x,\lambda) p_B(b|m,y,\lambda)$$

$$\mathcal{I}_X \le \alpha \quad \to \quad \sum_{\lambda} p(\lambda) P_g^{\lambda} \le 2^{\alpha - H_{min}(X)}$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

can restrict to
$$d$$
 = # inputs
$${\rm can \ take \ these \ deterministic}$$

$$p(b|x,y) = \sum_{\lambda} p(\lambda) \sum_{m=1}^d p_A(m|x,\lambda) p_B(b|m,y,\lambda)$$

$$P_g(X|\mathcal{E}) = \sum_{\lambda} P_g(X|\mathcal{E}_{\lambda})$$

$$E.g.: P_g(X|\mathcal{E}_{\lambda}) = \max_{N_x^{\lambda}} \sum_x p_X(x) [N_x^{\lambda} \rho_x^{\lambda}]$$

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

 $\lambda = 1$

No communication.

b = 1 always

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

$$\mathcal{I}_X = \log_2(1+q)$$

 $\lambda = 1$

No communication.

b = 1 always

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

$$\mathcal{I}_X = \log_2(1+q)$$

 $\lambda = 1$

No communication.

b = 1 always

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

$$\mathcal{I}_X = \log_2(1+q)$$

 $\lambda = 1$

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

 $\lambda = 1$

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

 $\lambda = 1$

Send input

$$F = 5$$

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

$$\mathcal{I}_X = \log_2(3 - q)$$

 $\lambda = 1$

Send input

$$F = 5$$

$$F = -(E_{11} + E_{12} + E_{21}) + (E_{22} + E_{31}) \le 2^{\alpha + 1} - 1 \qquad E_{xy} = p(0|xy) - p(1|xy)$$

QUANTUM VIOLATION

$$p(\lambda = 0) = q$$

$$\mathcal{I}_X = \log_2(3 - q)$$

 $\lambda = 1$

F = 5

Post-processing of output → lower bound on information given observed data

Post-processing of output → lower bound on information given observed data

Post-processing of output → lower bound on information given observed data

Post-processing of output → lower bound on information given observed data

$$\sum_{x,b} p_X(x) p(b|xy) p(b' = x|y,b) \le 2^{\alpha - H_{min}(X)}$$

Post-processing of output → lower bound on information given observed data

observed data
$$\sum_{x,b} p_X(x) p(b|xy) p(b'=x|y,b) \leq 2^{\alpha-H_{min}(X)}$$

Post-processing of output → lower bound on information given observed data

observed data
$$\sum_{x,b} p_X(x) p(b|xy) p(b'=x|y,b) \leq 2^{\alpha-H_{min}(X)}$$
 post-processing

Post-processing of output → lower bound on information given observed data

Post-processing of output → lower bound on information given observed data

Post-processing of output → lower bound on information given observed data

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

<u>States</u>

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x$$
$$-(-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x$$
$$-(-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x$$
$$-(-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x$$
$$-(-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x$$
$$-(-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x$$
$$-(-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x - (-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Correlation achievable with qudits (dim. d)

Achievable with $\mathcal{I}_X \leq \log_2(d)$

Example: random access code

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

States

$$\rho_x = \frac{1}{8} (2\mathbb{1} \otimes \mathbb{1} - (-1)^{x_4} \mathbb{1} \otimes \sigma_y - (-1)^{x_1} \sigma_x \otimes \sigma_x - (-1)^{x_2} \sigma_y \otimes \sigma_x - (-1)^{x_3} \sigma_z \otimes \sigma_x)$$

Measurements

Bounding dimension → no general hierarchy

For different RAC tasks, one approach outperforms the other and vice versa

Bounding dimension → no general hierarchy

For different RAC tasks, one approach outperforms the other and vice versa

Hameedi *et al., PRA*, 95, 052345 (2017).

Pawłowski, Żukowski, *PRA*, 81, 042326 (2010).

Tavakoli, Żukowski, *PRA*, 95, 042305 (2017).

Bounding dimension → no general hierarchy

For different RAC tasks, one approach outperforms the other and vice versa

Hameedi *et al., PRA*, 95, 052345 (2017).

Pawłowski, Żukowski, *PRA*, 81, 042326 (2010).

Tavakoli, Żukowski, *PRA*, 95, 042305 (2017).

Bounding dimension → no general hierarchy

For different RAC tasks, one approach outperforms the other and vice versa

Hameedi *et al., PRA*, 95, 052345 (2017).
Pawłowski, Żukowski, *PRA*, 81, 042326 (2010).
Tavakoli, Żukowski, *PRA*, 95, 042305 (2017).

Bounding information → quantum communication is *always* more powerful

Information cost:

$$P_g = \max_{N_z} \sum_{x,a} p_X(x) p(a|x) \text{Tr}[\mu_{a|x} N_x]$$

Reproduces the same correlation as in the entanglement-assisted case.

Reproduces the same correlation as in the entanglement-assisted case.

Information cost:

$$P_g = \max_{N_z} \sum_{x,a} p_X(x) p(a|x) \text{Tr}[(\mu_{a|x} \otimes \sigma_{a|x}) N_x]$$

Bounding dimension → no general hierarchy

For different communication tasks (e.g. RACs), one approach outperforms the other and vice versa

Hameedi *et al., PRA*, 95, 052345 (2017).
Pawłowski, Żukowski, *PRA*, 81, 042326 (2010).
Tavakoli, Żukowski, *PRA*, 95, 042305 (2017).

Bounding information → quantum communication is always more powerful

Bounding dimension → no general hierarchy

For different communication tasks (e.g. RACs), one approach outperforms the other and vice versa

Hameedi *et al., PRA*, 95, 052345 (2017).

Pawłowski, Żukowski, *PRA*, 81, 042326 (2010).

Tavakoli, Żukowski, *PRA*, 95, 042305 (2017).

Bounding information → quantum communication is always more powerful

$$P_g^Q = \max_{N_z} \sum_{x,a} p_X(x) p(a|x) \text{Tr}[(\mu_{a|x} \otimes \sigma_{a|x}) N_x] \le \max_{N_z} \sum_{x,a} p_X(x) p(a|x) \text{Tr}[\mu_{a|x} N_x] = P_g^{EA}$$

Bounding dimension → no general hierarchy

For different communication tasks (e.g. RACs), one approach outperforms the other and vice versa

Bounding information → quantum communication is always more powerful

$$P_g^Q = \max_{N_z} \sum_{x,a} p_X(x) p(a|x) \text{Tr}[(\mu_{a|x} \otimes \sigma_{a|x}) N_x] \le \max_{N_z} \sum_{x,a} p_X(x) p(a|x) \text{Tr}[\mu_{a|x} N_x] = P_g^{EA}$$

because $\operatorname{Tr}[(\mu_{a|x} \otimes \sigma_{a|x})N_x] \leq \operatorname{Tr}[\mu_{a|x}\operatorname{Tr}_B[N_x]]$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC}=3/4$ with $\mathcal{I}_X=1$

Can we have a larger separation?

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

Can we have a larger separation?

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

Can we have a larger separation?

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC} = 3/4$ with $\mathcal{I}_X = 1$

Can we have a larger separation?

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC}=3/4$ with $\mathcal{I}_X=1$

Can we have a larger separation?

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC}=3/4$ with $\mathcal{I}_X=1$

Can we have a larger separation?

Yes – at least w/o shared randomness.

Bell inequalities + q. comm > ent.-assisted. class. comm.

$$F'_{RAC} \leq \frac{1}{2}$$
 for $n \geq 2^{2m}$ using m bits or qubits.

$$F'_{RAC} = rac{1}{2} + rac{1}{2\sqrt{n}}$$
 using 1 bit of information

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$
$$F'_{RAC} = \min_{x,y} \ p(b = x_y | x, y)$$

For qubits: $F_{RAC} < 3/4$ (and probably $F_{RAC} \le 0.741$)

For bounded information: $F_{RAC}=3/4$ with $\mathcal{I}_X=1$

Can we have a larger separation?

Yes - at least w/o shared randomness.

Bell inequalities + q. comm > ent.-assisted. class. comm.

$$F'_{RAC} \leq \frac{1}{2} \quad \text{ for } n \geq 2^{2m} \quad \text{ using m bits or qubits.}$$

$$F'_{RAC} = \frac{1}{2} + \frac{1}{2\sqrt{n}}$$

$$F_{RAC} = \frac{1}{64} \sum_{x,y} p(b = x_y | x, y)$$
$$F'_{RAC} = \min_{x,y} \ p(b = x_y | x, y)$$

Unbounded separation

SUMMARY

arXiv:1909.05656

Bounding information – ability to guess the input from the message.

Alternative to bounding dimension, entropy, overlap, energy,...

- Separate classical from quantum correlations.
- Device-independent bound on the information.

- · Stronger correlations with same/less information as dimension-bounded schemes.
- Restore hierarchy of quantum communication vs. entanglement-assisted classical communication.

