Ŷ

Generalizing Inflation:

Constraining Correlations in General Causal Structures for Various Physical Theories

Elie Wolfe

Causality in a Quantum World Wednesday 18 September 2019 research made possible by John Templeton Foundation grant #60609 causality workshop funded by John Templeton Foundation grant #61084

Collaborators (Quantum Specific)

Miguel Navascués	Antonio Acín	Alejandro Pozas Kerstjens	Matan Grinberg	Denis Rosset
IQOQI	ICFO	ICFO	Princeton	Perimeter
Vienna, Austria	Castelldefels, Spain	Castelldefels, Spain	Princeton, NJ USA	Waterloo, ON Canada

Collaborators (GPT results)

Miguel Navascués	Stefano Pironio	Ilya Shpitser	
IQOQI	U. Libre Brussels	John Hopkins	
Vienna, Austria	Brussels, Belgium	Baltimore, MD USA	

Part One

Quantum Instrumental Inequalities, etc.

Verma Scenario

$$P_{Orig}(A=a, B=b, Y=y|X=x) \sim G_{Original} \text{ iff}$$

$$\exists P_{Interruption}(A=a, B=b, Y=y|X=x, Y'=y') \sim G_{Interruption}$$

$$P_{Orig}(A=a, B=b, Y=y|X=x) = P_{Interruption}(A=a, B=b, Y=y|X=x, Y'=y)$$

Verma Scenario

$$\begin{aligned} &P_{Orig}(A=a,B=b,Y=y|X=x) \sim G_{Original} & \text{iff} \\ \exists \ &P_{Interruption}(A=a,B=b,Y=y|X=x,Y'=y') \sim G_{Interruption} \\ &P_{Orig}(A=a,B=b,Y=y|X=x) = \ &P_{Interruption}(A=a,B=b,Y=y|X=x,Y'=y) \end{aligned}$$

$$P_{Interruption}(A, B, Y|X, Y') \text{ is unique, and identified as}$$
$$P_{Interruption}(A, B, Y|X, Y') \equiv \frac{P_{Orig}(A, B, Y=y'|X)}{P_{Orig}(Y=y'|A)}P_{Orig}(Y=y|A)$$

Verma Scenario

We are exploiting **truncated factorization** to isolate the elementary **functional constituents** of a causal model. Basically,

 $\begin{aligned} P_{Orig}(A, B, X, Y) &= P_{Orig}(X) P_{Orig}(Y|do(A)) P_{Orig}(A, B|do(XY)) & \text{where } P_{Orig}(Y|do(A)) = P_{Orig}(Y|A) \\ & \& \\ P_{Interruption}(A, B, X, Y, Y') &= P_{Orig}(X) P_{Orig}(Y|do(A)) P_{Orig}(A, B|do(XY')) \end{aligned}$

See "<u>Identification of Conditional Interventional Distributions</u>" (Shpitser & Pearl 2006) "<u>Introduction to Nested Markov Models</u>" (Shpitser et. al. 2014)

Other Verma Scenarios

 $P_{Orig}(AB|do(XY)) = \frac{P_{Orig}(ABY|X)}{P_{Orig}(Y|AB)}$

In both these cases $P_{Orig}(AB|do(XY))$ is **identifiable**, and must be compatible with quantum Bell scenario.

Bilocality Kernel

$$P_{Orig}(ABC|do(XY)) = \frac{P_{Orig}(ABCXY)}{P_{Orig}(X|B)P_{Orig}(Y|XB)}$$

Another Bilocality Kernel

...and another...

Original Scenario

"Interruption" Scenario

Triangle Kernel

Original Scenario

"Interruption" Scenario

$$P_{Orig}(ABC|do(Y)) = \frac{P_{Orig}(ABCY)}{P_{Orig}(Y|B)}$$

Instrumental Scenario

Here, $P_{Orig}(B|do(A))$ is not identified, but it is **constrained** via

 $\exists P_{Interruption}(A=a, B=b|X=x, A'=a') \sim G_{Interruption}$ such that 1. $P_{Orig}(A=a, B=b|X=x) = P_{Interruption}(A=a, B=b|X=x, A'=a)$ 2. $P_{Orig}(B|do(A=a)) = P_{Interruption}(B|A'=a)$

Instrumental Scenario

Thus one can constrain classical, quantum, or GPT do-conditionals. Different effect bounds!

Do-conditional effect bounds can be converted into compatibility inequalities, e.g.

LowerBound
$$(P_{Orig}(B=b|do(A=a))) \leq UpperBound (P_{Orig}(B=b|do(A=a)))$$

(Note that GPT compatibility equalities in the interruption scenario translate to inequalities in the original scenario.)

References:

- Quantum instrumental effect estimation: "<u>Quantum violation of an instrumental test</u>" (Chaves et. al. 2017)
- Relating Instrumental to Bell Scenario: "Quantum violations in the Instrumental scenario and their relations to the Bell scenario" (Van Himbeeck et. al. 2018)
- Compatibility inequalities from do-conditional bounds: "<u>Bounds on treatment effects from studies with imperfect compliance</u>" (Balke & Pearl, 1997)
- Do-conditional constraints from No-Signalling alone: "Inequality Constraints in Causal Models with Hidden Variables" (Kang & Tian, 2006)

Multipartite Bell for constraining do-conditionals

Here, $P_{Orig}(B|do(A))$ and $P_{Orig}(C|do(B))$ are not identified, but are **constrained** via

$$\exists P_{Interruption}(A=a, B=b, C=c|X=x, A'=a', B'=b') \sim G_{Interruption}$$

such that
1. $P_{Orig}(A=a, B=b, C=c|X=x) = P_{Interruption}(A=a, B=b, C=c|X=x, A'=a, B'=b')$
2. $P_{Orig}(B|do(A=a)) = P_{Interruption}(B|A'=a)$
3. $P_{Orig}(C|do(B=b)) = P_{Interruption}(C|B'=b)$

Bilocality for constraining do-conditionals #1

 $D \amalg_{do(B)} A \mid C$

Bilocality for constraining do-conditionals #2

 $B \perp _{do(A)} C$

Effect Estimation (no constraint implied)

This graph is **saturated** (no inequality constraints). Still, if we observe $P_{Orig}(ABC) = \frac{[000]+[111]}{2}$ then we can conclude that $P_{Orig}(B=0|do(A=0)) \gg P_{Orig}(B=0)$ in **any physical theory**.

Part Two Motivating Quantum Inflation

Quantum Triangle Scenario with Settings

Quantum Channels Picture

Hybrid Network: (global shared randomness)

Quantum Channels Picture

Why Shared Randomness is **HARDER**

 $P(A^{1}B^{1}A^{2}B^{2}|X^{1}Y^{1}X^{2}Y^{2}) = P(A^{1}B^{1}|X^{1}Y^{1})P(A^{2}B^{2}|X^{2}Y^{2})$

 $P(A^{1}B^{1}A^{2}B^{2}|X^{1}Y^{1}X^{2}Y^{2}) \neq P(A^{1}B^{1}|X^{1}Y^{1})P(A^{2}B^{2}|X^{2}Y^{2})$

Non-Fanout Inflation References:

- "<u>Theory-independent limits on correlations from generalised</u> <u>Bayesian networks</u>" (Henson, Lal, & Pusey, 2014) <u>See Section 4: "Beyond conditional independence: quantitative bounds on correlations</u>"
- "<u>The Inflation Technique for Causal Inference with Latent Variables</u>" (EW, Spekkens, & Fritz, 2016)

See Section V-D: *"Implications of the Inflation Technique for Quantum Physics and Generalized Probabilistic Theories"*

• "<u>Constraints on nonlocality in networks from no-signaling and</u> <u>independence</u>" (Gisin et. al., 2019)

A Tale of 3 Boxes and 2 Physical Theories

- Box #8: Not possible in GPT triangle scenario.
- Box #4: Apparently possible in the GPT triangle scenario, but **obviously** not quantum.
- Mermin-GHZ Pseudotelepathy game: Apparently possible in the GPT triangle scenario, but (not obviously!!) not quantum.

"<u>Extremal correlations of the tripartite no-signaling polytope</u>" (Pironio, Bancal, & Scarani, 2011)

Box #8

$$\begin{array}{l} \langle A_0 B_0 \rangle = +1 \\ \langle A_0 C_0 \rangle = +1 \\ \langle A_0 C_1 \rangle = +1 \\ \langle B_0 C_0 \rangle = +1 \\ \langle B_0 C_1 \rangle = +1 \\ \langle A_1 B_1 C_0 \rangle = +1 \\ \langle A_1 B_1 C_1 \rangle = -1 \end{array}$$

Postquantum, no-signalling tripartite box.

Box #8: Charlie can guess Bob

$$\begin{array}{l} \left\langle A_{x=0}B_{y=0}\right\rangle = +1 \\ \left\langle A_{x=0}C_{z=0}\right\rangle = +1 \\ \dots \end{array} \end{array}$$

 $C_{z=0}^2$ can correctly guess $B_{y=0}^1$ via $B_{y=0}^1$ being correlated with $A_{x=0}^1$ and $A_{x=0}^1$ being correlated with $C_{z=0}^2$

Extremality prohibits 4th party guessing...

 $B_{1|y=0} C_{2|z=0}$ must be a product distribution if $A_{1|x=0} B_{1|y=0} C_{2|z=0}$ is an extremal tripartite NS box.

Box #8: Alternative Argument

 $P(A^{1}B^{1}|XY) = P(A^{2}B^{2}|XY)$ $P(B^{1}C^{1}|YZ) = P(B^{2}C^{2}|YZ)$

Box #8: Alternative Argument B^2 A^2 $\psi^2_{ m AB}$ $\psi_{ m BC}^2$ $\langle A_{x=0}B_{y=0} \rangle = +1$ $\langle B_{y=0}C_{z=0} \rangle = +1$ $\psi_{ m AC}^2$ B^1 X $\psi^1_{ m BC}$ $\psi^{\rm I}_{\rm AB}$

 A^1

 $\psi_{\rm AC}$

 $\psi^3_{
m AC}$

 C^1

 $P(A^{1}B^{1}|XY) = P(A^{2}B^{2}|XY)$ $P(B^{1}C^{1}|YZ) = P(B^{2}C^{2}|YZ)$ $P(A^{2}C^{2}|XZ) = P(A^{1}C^{2}|XZ)$

n-way extremality vs. (*n*-1)-way correlation

- Many tripartite extremal NS boxes are evidently incompatible with the (GPT) triangle scenario.
- Quantum version: Extremality of a box in the 3-way **quantum** correlations set **conflicts** with two-pairs of bipartite correlation
- FYI: There exists a **noisy variant** of Box #8 which is **GPT-triangle incompatible** but admits quantum realization using 3-way entanglement.

Non PR-ness Proofs:

 "<u>Popescu-Rohrlich Correlations as a Unit of Nonlocality</u>" (Barrett & Pironio, 2005)

See Theorem 2: (5-cycle graph-state correlations cannot be simulated via PR boxes)

- "<u>Test to separate quantum theory from non-signaling theories</u>" (Chao & Reichardt, 2017)
- "<u>Separating pseudo-telepathy games and two-local theories</u>" (Mathieu & Mhalla, 2018)

Box #4

$$\begin{array}{l} \langle A_0 B_1 \rangle = +1 \\ \langle B_0 C_1 \rangle = +1 \\ \langle C_0 A_1 \rangle = +1 \\ \langle A_0 B_0 C_0 \rangle = +1 \\ \langle A_1 B_1 C_1 \rangle = -1 \end{array}$$

Postquantum, no-signalling tripartite box.

No **chain** of bipartite correlation terms!

Box #4

$$\begin{array}{l} \langle A_0 B_1 \rangle = +1 \\ \langle B_0 C_1 \rangle = +1 \\ \langle C_0 A_1 \rangle = +1 \\ \langle A_0 B_0 C_0 \rangle = +1 \\ \langle A_1 B_1 C_1 \rangle = -1 \end{array}$$

Box #4 appears to be **GPT-realizable** in the triangle scenario!

This, despite the fact that it cannot be realized via any wiring of PR boxes*.

(Obviously quantum incompatible.)

*Per "Feats, Features and Failures of the PR-box" (Scarani, 2005)

Does Box #4 admit a Triangle GPT realization?

- Stefano thinks so, but still an open question!
- Wirings are weaker that GPT entangled measurements. See: <u>"Couplers for non-locality swapping</u>" (Linden & Brunner, 2009) and <u>"Generalizations of Boxworld</u>" (Janotta, 2012)
- See also: "Information-Causality and Extremal Tripartite Correlations" (Yang et. al. 2012) See Section IV: "Class #4: Extremal No-Signalling Correlations Satisfying and Bipartite Criterion"

Example: Mermin-GHZ Pseudotelepathy

$$\begin{cases} \langle A_0 B_0 C_1 \rangle = +1 \\ \langle A_0 B_1 C_0 \rangle = +1 \\ \langle A_1 B_0 C_0 \rangle = +1 \\ \langle A_1 B_1 C_1 \rangle = -1 \end{cases}$$

$$|\psi_{ABC}\rangle = \frac{|000\rangle - |111\rangle}{\sqrt{2}}$$
 Setting "0" = σ_Y Setting "1" = σ_X Setting "1" = σ_X Setting "1" = σ_X

Mermin-GHZ can be simulated with a PR box

$$\begin{array}{l} \langle A_0 B_0 C_1 \rangle = +1 \\ \langle A_0 B_1 C_0 \rangle = +1 \\ \langle A_1 B_0 C_0 \rangle = +1 \\ \langle A_1 B_1 C_1 \rangle = -1 \end{array}$$

(Just have Charlie output +1 deterministically for both settings.)

Mermin-GHZ failure w/ 2-way entanglement

$$P_{Mermin,\boldsymbol{\nu}}(abc|xyz) = \begin{cases} \frac{1}{8} & x+y+z = 0 \mod 2\\ (1+\boldsymbol{\nu}(-1)^{a+b+c})/8 & x+y+z = 1\\ (1-\boldsymbol{\nu}(-1)^{a+b+c})/8 & x+y+z = 3 \end{cases}, \quad \boldsymbol{\nu} \le \sqrt{5/8}$$

$\langle A_0 B_0 C_1 \rangle + \langle A_0 B_1 C_0 \rangle + \langle A_1 B_0 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \le \sqrt{10}$

See **Quantum Inflation** technique – talk by Toni Acin, poster of Alex Pozas-Kerstjens

Mermin-GHZ References:

- "<u>Quantum mysteries revisited</u>" (Mermin, 1990)
- "<u>Recasting Mermin's multi-player game into the framework of</u> <u>pseudo-telepathy</u>" (Brassard et. al., 2005)
- "On the power of non-local boxes" (Broadbent & Méthot, 2006)

Review of Motivating Questions

QUESTION: What is a tripartite **quantum correlation** which **cannot** be realized if the parties share **2-way GPT resources** (and 3-way classical shared randomness?

TECHNIQUE: No-signalling inequalities (from hexagon ring inflation of the triangle).

SOLUTION: Noisy version of tripartite extremal NS Box #8.

QUESTION: What is a tripartite quantum correlations which **could** be realized if the parties share **2-way GPT resources** but **not** if they only share **2-way quantum resources**?

TECHNIQUE: Quantum Inflation.

SOLUTION: The Mermin-GHZ nonlocal box (psuedotelepathy, GHZ-state self-test.)

Previous relevant (but incomplete) ideas

- *"The Inflation Technique for Causal Inference with Latent Variables"* EW, Robert W. Spekkens, Tobias Fritz <u>arXiv:1609.00672</u>
 Deficiency: Cannot distinguish quantum from GPT.
- *"Information-theoretic implications of quantum causal structures"* Rafael Chaves, Christian Majenz, David Gross <u>arXiv:1407.3800</u> See also *"Analysing causal structures in generalised probabilistic theories"* Mirjam Weilenmann, Roger Colbeck <u>arXiv:1812.04327</u> Deficiency: Insensitive. Does not rule out W in quantum triangle.
- *"Bounding the sets of classical and quantum correlations in networks"* Alejandro Pozas-Kerstjens, Rafael Rabelo, Łukasz Rudnicki, Rafael Chaves, Daniel Cavalcanti, Miguel Navascues, Antonio Acín <u>arXiv:1904.08943</u>

Deficiency: Leverages independence, so not applicable to quantum triangle.

Summary

• Edges originating from non-root observed variables: **INTERRUPTION** (followed by traditional quantum constraining)

(followed by traditional quantum constraining)

 Multiple root quantum nodes: **NON-FANOUT INFLATION** (holds for any physical theory) followed by **QUANTUM INFLATION** (if need be)

Thank You