Generalizing Inflation:

Constraining Correlations in General Causal Structures for Various Physical Theories

Elie Wolfe

Causality in a Quantum World Wednesday 18 September 2019

research made possible by John Templeton Foundation grant \#60609 causality workshop funded by John Templeton Foundation grant \#61084

Collaborators (Quantum Specific)

Miguel Navascués	Antonio Acin	Alejandro Pozas Kerstiens	Matan Grinberg	Denis Rosset
IQOQI	ICFO	ICFO	Princeton	Perimeter
Vienna, Austria	Castelldefels, Spain	Castelldefels, Spain	Princeton, NJ USA	Waterloo, ON Canada

Collaborators (GPT results)

Miguel Navascués	Stefano Pironio	Ilya Shpitser
IQOQI	U. Libre Brussels	John Hopkins
Vienna, Austria	Brussels, Belgium	Baltimore, MD USA

Part One

Quantum Instrumental Inequalities, etc.

Verma Scenario

"Equivalence and Synthesis of Causal Models" (Verma \& Pearl, 1990)

Seems like should be able to isolate the nonclassical (Bell-like) part through knowing how \boldsymbol{Y} classically depends on \boldsymbol{A}...

Verma Scenario

Verma Scenario

Verma Scenario

What??

We are exploiting truncated factorization to isolate the elementary functional constituents of a causal model. Basically,

$$
\begin{gathered}
P_{\text {orig }}(A, B, X, Y)=P_{\text {orig }}(X) P_{\text {orig }}(Y \mid \operatorname{do}(A)) P_{\text {orig }}(A, B \mid \operatorname{do}(X Y)) \text { where } P_{\text {orig }}(Y \mid \operatorname{do}(A))=P_{\text {orig }}(Y \mid A) \\
\& \\
P_{\text {Interruption }}\left(A, B, X, Y, Y^{\prime}\right)=P_{\text {Orig }}(X) P_{\text {orig }}(Y \mid \operatorname{do}(A)) P_{\text {Orig }}\left(A, B \mid \operatorname{do}\left(X Y^{\prime}\right)\right)
\end{gathered}
$$

Other Verma Scenarios

$P_{\text {orig }}(A B \mid d o(X Y))=\frac{P_{\text {orig }}(A B Y \mid X)}{P_{\text {orig }}(Y \mid A B)}$

In both these cases $P_{\text {orig }}(A B \mid d o(X Y))$ is identifiable, and must be compatible with quantum Bell scenario.

Bilocality Kernel

Original Scenario

"Interruption" Scenario

$$
P_{\text {Orig }}(A B C \mid \operatorname{do}(X Y))=\frac{P_{\text {Orig }}(A B C X Y)}{P_{\text {Orig }}(X \mid B) P_{\text {Orig }}(Y \mid X B)}
$$

Another Bilocality Kernel

```
Original Scenario
```

"Interruption" Scenario

...and another...

Original Scenario

"Interruption" Scenario

Triangle Kernel

Original Scenario

> "Interruption" Scenario

$$
P_{\text {Orig }}(A B C \mid d o(Y))=\frac{P_{\text {orig }}(A B C Y)}{P_{\text {Orig }}(Y \mid B)}
$$

Instrumental Scenario

Original Scenario
"Interruption" Scenario

Here, $P_{\text {Orig }}(B \mid \operatorname{do}(A))$ is not identified, but it is constrained via

$$
\begin{array}{ll}
& \exists P_{\text {Interruption }}\left(A=a, B=b \mid X=x, A^{\prime}=a^{\prime}\right) \sim G_{\text {Interruption }} \\
\text { such that } \\
\text { 1. } & P_{\text {Orig }}(A=a, B=b \mid X=x)=P_{\text {Interruption }}\left(A=a, B=b \mid X=x, A^{\prime}=a\right) \\
\text { 2. } & P_{\text {Orig }}(B \mid \operatorname{do}(A=\mathrm{a}))=P_{\text {Interruption }}\left(B \mid A^{\prime}=a\right)
\end{array}
$$

Instrumental Scenario

Original Scenario

```
"Interruption" Scenario
```


Thus one can constrain classical, quantum, or GPT do-conditionals. Different effect bounds!
Do-conditional effect bounds can be converted into compatibility inequalities, e.g.

$$
\text { LowerBound }\left(P_{\text {Orig }}(B=b \mid \text { do }(A=a))\right) \leq \operatorname{UpperBound}\left(P_{\text {orig }}(B=b \mid \text { do }(A=a))\right)
$$

(Note that GPT compatibility equalities in the interruption scenario translate to inequalities in the original scenario.)

References:

- Quantum instrumental effect estimation:
"Quantum violation of an instrumental test" (Chaves et. al. 2017)
- Relating Instrumental to Bell Scenario:
"Quantum violations in the Instrumental scenario and their relations to the Bell scenario" (Van Himbeeck et. al. 2018)
- Compatibility inequalities from do-conditional bounds:
"Bounds on treatment effects from studies with imperfect compliance" (Balke \& Pearl, 1997)
- Do-conditional constraints from No-Signalling alone:
"Inequality Constraints in Causal Models with Hidden Variables" (Kang \& Tian, 2006)

Multipartite Bell for constraining do-conditionals

Original Scenario

"Interruption" Scenario

Here, $P_{\text {Orig }}(B \mid d o(A))$ and $P_{\text {Orig }}(C \mid d o(B))$ are not identified, but are constrained via

$$
\exists P_{\text {Interruption }}\left(A=a, B=b, C=c \mid X=x, A^{\prime}=a^{\prime}, B^{\prime}=b^{\prime}\right) \sim G_{\text {Interruption }}
$$ such that

1. $P_{\text {Orig }}(A=a, B=b, C=c \mid X=x)=P_{\text {Interruption }}\left(A=a, B=b, C=c \mid X=x, A^{\prime}=a, B^{\prime}=b^{\prime}\right)$
2. $P_{\text {Orig }}(B \mid \operatorname{do}(A=a))=P_{\text {Interruption }}\left(B \mid A^{\prime}=a\right)$
3. $P_{\text {Orig }}(C \mid d o(B=b))=P_{\text {Interruption }}\left(C \mid B^{\prime}=b\right)$

Bilocality for constraining do-conditionals \#1

Original Scenario
"Interruption" Scenario

Bilocality for constraining do-conditionals \#2

Original Scenario

"Interruption" Scenario

$B \Perp_{d o(A)} C$

Effect Estimation (no constraint implied)

Original Scenario

"Interruption" Scenario

This graph is saturated (no inequality constraints). Still, if we observe $P_{\text {Orig }}(A B C)=\frac{[000]+[111]}{2}$ then we can conclude that $P_{\text {orig }}(B=0 \mid d o(A=0)) \gg P_{\text {Orig }}(B=0)$ in any physical theory.

Part Two
Motivating Quantum Inflation

Quantum Triangle Scenario with Settings

Quantum Channels Picture

Hybrid Network: (global shared randomness)

Quantum Channels Picture

Why Shared Randomness is HARDER

$$
P\left(A^{1} B^{1} A^{2} B^{2} \mid X^{1} Y^{1} X^{2} Y^{2}\right)=P\left(A^{1} B^{1} \mid X^{1} Y^{1}\right) P\left(A^{2} B^{2} \mid X^{2} Y^{2}\right)
$$

$P\left(A^{1} B^{1} A^{2} B^{2} \mid X^{1} Y^{1} X^{2} Y^{2}\right) \neq P\left(A^{1} B^{1} \mid X^{1} Y^{1}\right) P\left(A^{2} B^{2} \mid X^{2} Y^{2}\right)$

Non-Fanout Inflation References:

- "Theory-independent limits on correlations from generalised Bayesian networks" (Henson, Lal, \& Pusey, 2014)
See Section 4: "Beyond conditional independence: quantitative bounds on correlations"
- "The Inflation Technique for Causal Inference with Latent Variables" (EW, Spekkens, \& Fritz, 2016)
See Section V-D: "Implications of the Inflation Technique for Quantum Physics and Generalized Probabilistic Theories"
- "Constraints on nonlocality in networks from no-signaling and independence" (Gisin et. al., 2019)

A Tale of 3 Boxes and 2 Physical Theories

- Box \#8: Not possible in GPT triangle scenario.
- Box \#4: Apparently possible in the GPT triangle scenario, but obviously not quantum.
- Mermin-GHZ Pseudotelepathy game: Apparently possible in the GPT triangle scenario, but (not obviously!!) not quantum.

[^0]
Box \#8

$$
\begin{aligned}
& \left\langle A_{0} B_{0}\right\rangle=+1 \\
& \left\langle A_{0} C_{0}\right\rangle=+1 \\
& \left\langle A_{0} C_{1}\right\rangle=+1 \\
& \left\langle B_{0} C_{0}\right\rangle=+1 \\
& \left\langle B_{0} C_{1}\right\rangle=+1 \\
& \left\langle A_{1} B_{1} C_{0}\right\rangle=+1 \\
& \left\langle A_{1} B_{1} C_{1}\right\rangle=-1
\end{aligned}
$$

Postquantum, no-signalling tripartite box.

Box \#8: Charlie can guess Bob

$$
\begin{aligned}
& \left\langle A_{x=0} B_{y=0}\right\rangle=+1 \\
& \left\langle A_{x=0} C_{z=0}\right\rangle=+1
\end{aligned}
$$

$C_{z=0}^{2}$ can correctly guess $B_{y=0}^{1}$ via $B_{y=0}^{1}$ being correlated with $A_{x=0}^{1}$ and $A_{x=0}^{1}$ being correlated with $C_{z=0}^{2}$

Extremality prohibits $4^{\text {th }}$ party guessing...

$B_{1 \mid y=0} C_{2 \mid z=0}$ must be a product distribution
if $A_{1 \mid x=0} B_{1 \mid y=0} C_{2 \mid z=0}$ is an extremal tripartite NS box.

Box \#8: Alternative Argument

$$
\begin{aligned}
& P\left(A^{1} B^{1} \mid X Y\right)=P\left(A^{2} B^{2} \mid X Y\right) \\
& P\left(B^{1} C^{1} \mid Y Z\right)=P\left(B^{2} C^{2} \mid Y Z\right)
\end{aligned}
$$

Box \#8: Alternative Argument

$$
\begin{aligned}
& \left\langle A_{x=0} B_{y=0}\right\rangle=+1 \\
& \left\langle B_{y=0} C_{z=0}\right\rangle=+1
\end{aligned}
$$

$$
P\left(A^{1} B^{1} \mid X Y\right)=P\left(A^{2} B^{2} \mid X Y\right)
$$

$$
P\left(B^{1} C^{1} \mid Y Z\right)=P\left(B^{2} C^{2} \mid Y Z\right)
$$

$$
P\left(A^{2} C^{2} \mid X Z\right)=P\left(A^{1} C^{2} \mid X Z\right)
$$

n-way extremality vs. (n-1)-way correlation

- Many tripartite extremal NS boxes are evidently incompatible with the (GPT) triangle scenario.
- Quantum version: Extremality of a box in the 3-way quantum correlations set conflicts with two-pairs of bipartite correlation
- FYI: There exists a noisy variant of Box \#8 which is GPT-triangle incompatible but admits quantum realization using 3-way entanglement.

Non PR-ness Proofs:

- "Popescu-Rohrlich Correlations as a Unit of Nonlocality" (Barrett \& Pironio, 2005)
See Theorem 2: (5-cycle graph-state correlations cannot be simulated via PR boxes)
- "Test to separate quantum theory from non-signaling theories" (Chao \& Reichardt, 2017)
- "Separating pseudo-telepathy games and two-local theories" (Mathieu \& Mhalla, 2018)

Box \#4

$$
\begin{aligned}
& \left\langle A_{0} B_{1}\right\rangle=+1 \\
& \left\langle B_{0} C_{1}\right\rangle=+1 \\
& \left\langle C_{0} A_{1}\right\rangle=+1 \\
& \left\langle A_{0} B_{0} C_{0}\right\rangle=+1 \\
& \left\langle A_{1} B_{1} C_{1}\right\rangle=-1
\end{aligned}
$$

Postquantum, no-signalling tripartite box.

No chain of bipartite correlation terms!

Box \#4

$$
\begin{aligned}
& \left\langle A_{0} B_{1}\right\rangle=+1 \\
& \left\langle B_{0} C_{1}\right\rangle=+1 \\
& \left\langle C_{0} A_{1}\right\rangle=+1 \\
& \left\langle A_{0} B_{0} C_{0}\right\rangle=+1 \\
& \left\langle A_{1} B_{1} C_{1}\right\rangle=-1
\end{aligned}
$$

Box \#4 appears to be GPT-realizable in the triangle scenario!

This, despite the fact that it cannot be realized via any wiring of PR boxes*.
(Obviously quantum incompatible.)

Does Box \#4 admit a Triangle GPT realization?

- Stefano thinks so, but still an open question!
- Wirings are weaker that GPT entangled measurements. See: "Couplers for non-locality swapping" (Linden \& Brunner, 2009) and "Generalizations of Boxworld" (Janotta, 2012)
- See also: "Information-Causality and Extremal Tripartite Correlations" (Yang et. al. 2012)
See Section IV: "Class \#4: Extremal No-Signalling Correlations Satisfying and Bipartite Criterion"

Example: Mermin-GHZ Pseudotelepathy

$$
\begin{aligned}
& \left\langle A_{0} B_{0} C_{1}\right\rangle=+1 \\
& \left\langle A_{0} B_{1} C_{0}\right\rangle=+1 \\
& \left\langle A_{1} B_{0} C_{0}\right\rangle=+1 \\
& \left\langle A_{1} B_{1} C_{1}\right\rangle=-1
\end{aligned}
$$

$\left|\Psi_{A B C}\right\rangle=\frac{|000\rangle-|111\rangle}{\sqrt{2}}$
Setting " 0 " $=\sigma_{Y}$
Setting " 1 " $=\sigma_{X}$

Mermin-GHZ success w/ 3-way entanglement

Mermin-GHZ can be simulated with a PR box

$$
\begin{aligned}
\left\langle A_{0} B_{0} C_{1}\right\rangle & =+1 \\
\left\langle A_{0} B_{1} C_{0}\right\rangle & =+1 \\
\left\langle A_{1} B_{0} C_{0}\right\rangle & =+1 \\
\left\langle A_{1} B_{1} C_{1}\right\rangle & =-1
\end{aligned}
$$

(Just have Charlie output +1 deterministically for both settings.)

Mermin-GHZ failure w/ 2-way entanglement

$$
P_{\text {Mermin }, v}(a b c \mid x y z)=\left\{\begin{array}{cl}
\frac{1}{8} & x+y+z=0 \bmod 2 \\
\left(1+v(-1)^{a+b+c}\right) / 8 \\
\left(1-v(-1)^{a+b+c}\right) / 8
\end{array} \quad x+y+z=1, \quad v \leq \sqrt{5 / 8}\right.
$$

$$
\left\langle A_{0} B_{0} C_{1}\right\rangle+\left\langle A_{0} B_{1} C_{0}\right\rangle+\left\langle A_{1} B_{0} C_{0}\right\rangle-\left\langle A_{1} B_{1} C_{1}\right\rangle \leq \sqrt{10}
$$

Mermin-GHZ References:

- "Quantum mysteries revisited" (Mermin, 1990)
- "Recasting Mermin's multi-player game into the framework of pseudo-telepathy" (Brassard et. al., 2005)
- "On the power of non-local boxes" (Broadbent \& Méthot, 2006)

Review of Motivating Questions

QUESTION: What is a tripartite quantum correlation which cannot be realized if the parties share 2-way GPT resources (and 3-way classical shared randomness?

TECHNIQUE: No-signalling inequalities (from hexagon ring inflation of the triangle).

SOLUTION: Noisy version of tripartite extremal NS Box \#8.

QUESTION: What is a tripartite quantum correlations which could be realized if the parties share 2-way GPT resources but not if they only share 2-way quantum resources?

TECHNIQUE: Quantum Inflation.

SOLUTION: The Mermin-GHZ nonlocal box (psuedotelepathy, GHZ-state selftest.)

Previous relevant (but incomplete) ideas

- "The Inflation Technique for Causal Inference with Latent Variables"

EW, Robert W. Spekkens, Tobias Fritz arXiv:1609.00672
Deficiency: Cannot distinguish quantum from GPT.

- "Information-theoretic implications of quantum causal structures"

Rafael Chaves, Christian Majenz, David Gross arXiv:1407.3800
See also "Analysing causal structures in generalised probabilistic theories"
Mirjam Weilenmann, Roger Colbeck arXiv:1812.04327
Deficiency: Insensitive. Does not rule out W in quantum triangle.

- "Bounding the sets of classical and quantum correlations in networks"

Alejandro Pozas-Kerstjens, Rafael Rabelo, Łukasz Rudnicki, Rafael Chaves, Daniel Cavalcanti, Miguel Navascues, Antonio Acín arXiv:1904.08943

Deficiency: Leverages independence, so not applicable to quantum triangle.

Summary

- Edges originating from non-root observed variables:

INTERRUPTION
(followed by traditional quantum constraining)

- Multiple root quantum nodes:

NON-FANOUT INFLATION
(holds for any physical theory)
followed by
QUANTUM INFLATION
(if need be)

Thank You

[^0]: "Extremal correlations of the tripartite no-signaling polytope" (Pironio, Bancal, \& Scarani, 2011)

