CAUSAL NONSEPARABILITY AS AN OPERATIONAL RESOURCE: DEFINITIONS, CONVERSION, DISTILLATION

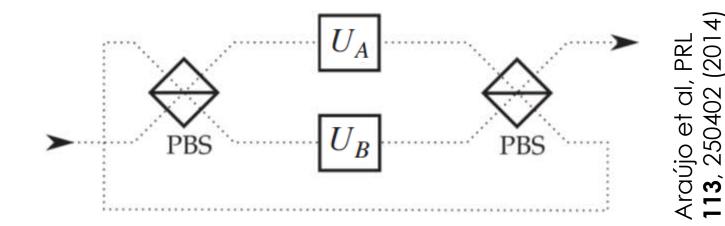
Márcio Mendes Taddei Anacapri, September 2019



(collaboration with R.V. Nery, L. Aolita) arXiv:1903.06180



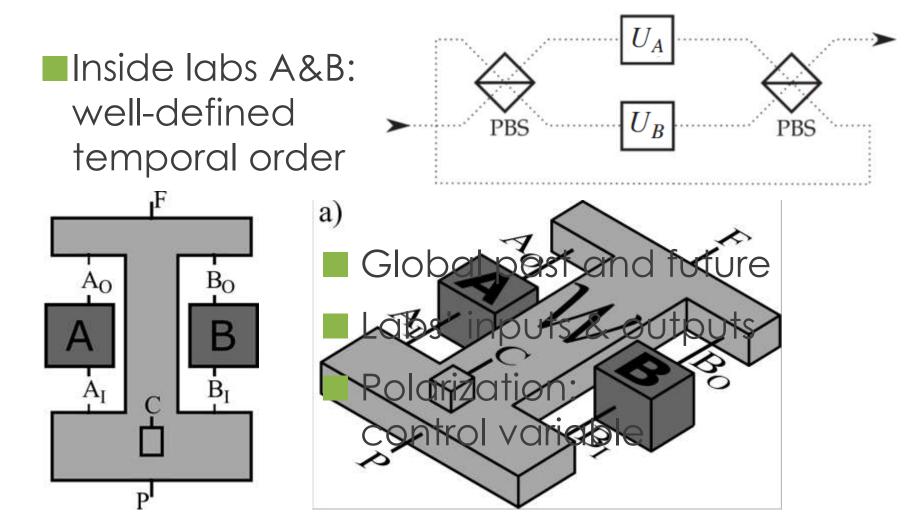
#### CAUSAL NONSEPARABILITY AN EXAMPLE



## $|H\rangle: A \rightarrow B, |V\rangle: B \rightarrow A$

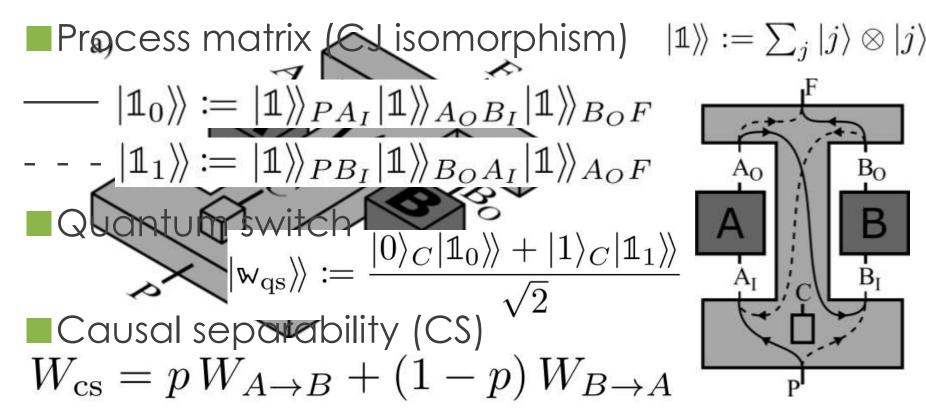
Quantum switch:  $|H\rangle_{C}U_{B}U_{A}|\phi_{0}\rangle + |V\rangle_{C}U_{A}U_{B}|\phi_{0}\rangle$  $|\phi_{0}\rangle$ : other dof (e.g. spatial)

#### SETUP: TWO INDEPENDENT LABS



#### PROCESS IN SCENARIO WITH CONTROL

Encapsulates entire state preparation, measurement, transmission outside labs (W)



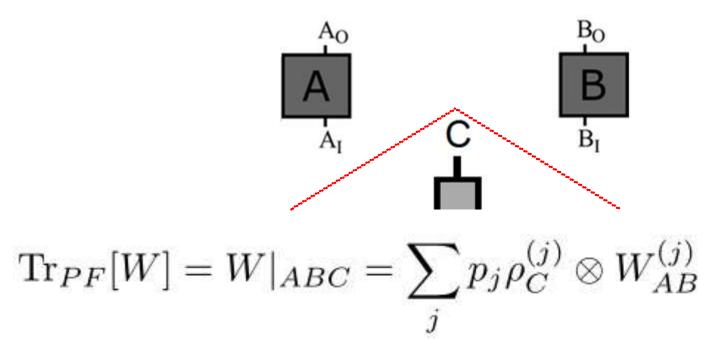
#### PROCESS IN SCENARIO WITH CONTROL

Not restricted to processes where control takes active role  $W_{OCB} = \mathbf{1}_C \otimes \mathbf{1}_P \otimes \frac{1}{4} \left( \mathbb{1} + \frac{\mathbb{1}_{A_I} Z_{A_O} Z_{B_I} \mathbb{1}_{B_O} + Z_{A_I} \mathbb{1}_{A_O} X_{B_I} Z_{B_O}}{\sqrt{2}} \right) \otimes \mathbf{1}_F$ [Oreshkov, Costa, Brukner, Nat Comms **3**, 1092 (2012)] Different from quantum switch  $W_{qs} = \left( \frac{|0\rangle_C |\mathbb{1}_0\rangle + |1\rangle_C |\mathbb{1}_1\rangle}{\sqrt{2}} \right) \left( \frac{\langle 0|_C \langle \langle \mathbb{1}_0| + \langle 1|_C \langle \langle \mathbb{1}_1| \\ \sqrt{2} \rangle}{\sqrt{2}} \right)$ 

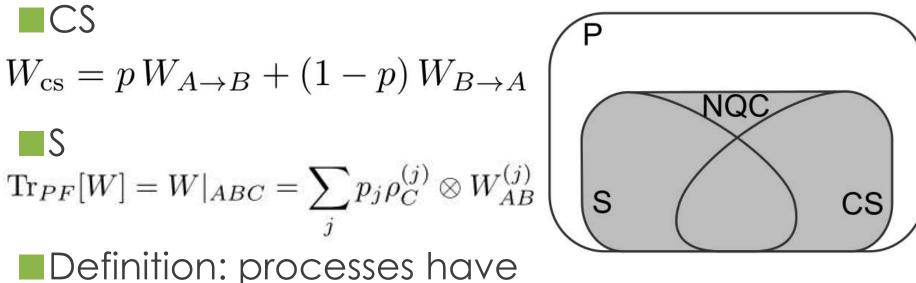
How to specify these different forms of causal nonseparability?

#### DEFINITION: QUANTUM CONTROL OF CAUSAL ORDERS

- Specific resource present in quantum switch
   Goes beyond causal separability (CS)
- Depends also on AB | C separability (S)



#### DEFINITION: QUANTUM CONTROL OF CAUSAL ORDERS



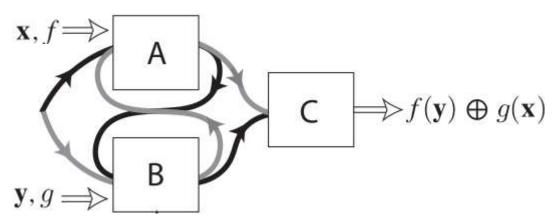
**Quantum Control of Causal Orders** (QCCO) when outside convex hull of CS and S

Why convex hull?

## AS A RESOURCE?

#### CAUSAL NONSEPARABILITY AS A RESOURCE FOR QUANTUM TASKS

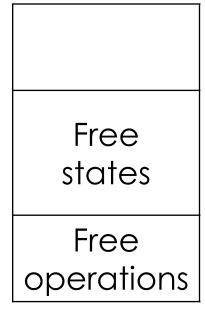
- Chiribella's and Costa's talks
- Araujo et al, PRL 113, 250402 (2014) (Anti-)commutation of unitaries
- [Experiment with more than 2 unitaries?]
- Guerin et al, PRL 117, 100502 (2016) Advantage in one-way communication





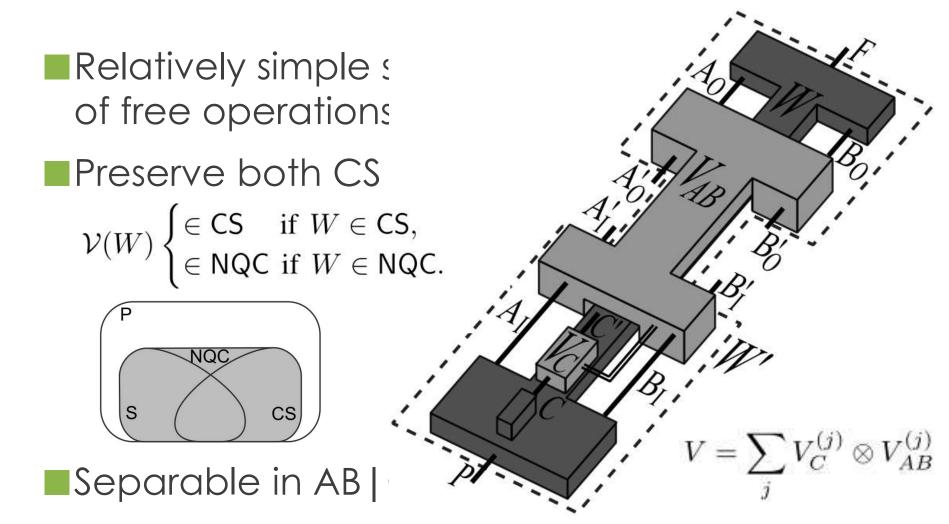
#### **RESOURCE THEORIES**

#### Resource theories hinge on two sets



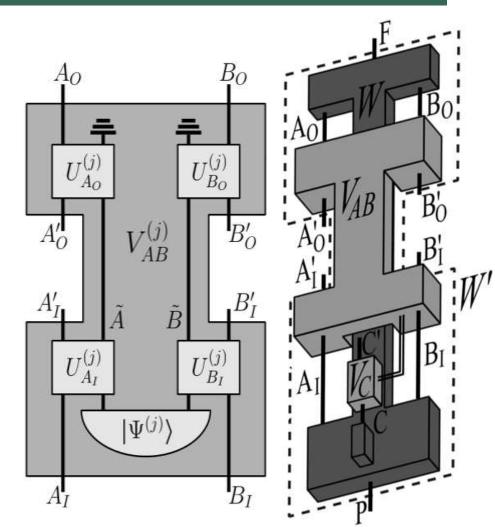
# What are the relevant sets of free operations?

#### FREE OPERATIONS



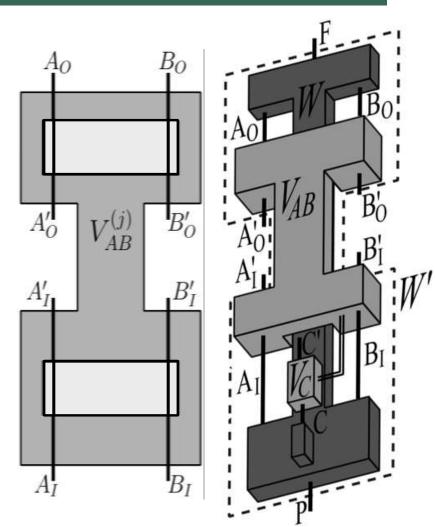
#### SETS OF FREE OPERATIONS: LOAE

- Operations without any A-B signaling\*
- Local unitaries
- Shared entanglement allowed
- "Local Operations and Ancillary Entanglement"



#### SETS OF FREE OPERATIONS: PROB LAB SWAPS

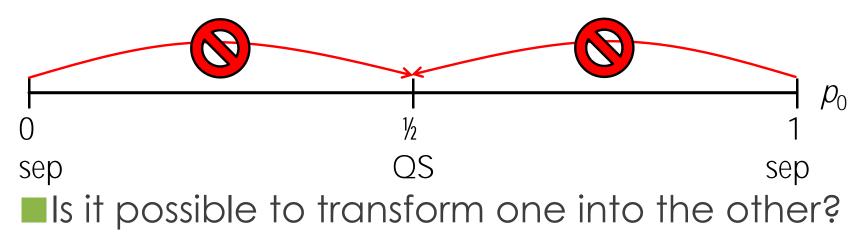
- Signaling A-B allowedEither full lab swap
- Or identity channel
- Probabilistic combination (incoherently controlled)
- PLS ("probabilistic lab swaps")



# NOW, WHAT CAN WE DO WITH THESE OPERATIONS?

Consider 
$$|\mathbf{w}\rangle = \sqrt{p_0} |0\rangle_C |\mathbb{1}_0\rangle + \sqrt{p_1} |1\rangle_C |\mathbb{1}_1\rangle$$

If  $p_0 = 0$  or  $p_1 = 0$ , causally separable; if  $p_0 = \frac{1}{2} = p_1$ , quantum switch

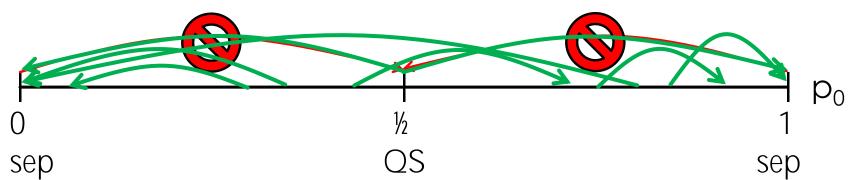


$$|\mathbf{w}\rangle\rangle = \sqrt{p_0}|0\rangle_C|\mathbb{1}_0\rangle\rangle + \sqrt{p_1}|1\rangle_C|\mathbb{1}_1\rangle\rangle$$

Any process can be freely transformed into separable ones

General: majorization-defined ("outwards")  $(p_0, p_1) = C_0 (p'_0, p'_1) + C_1 (p'_1, p'_0)$ 

Hierarchy of Q Control of Causal Orders



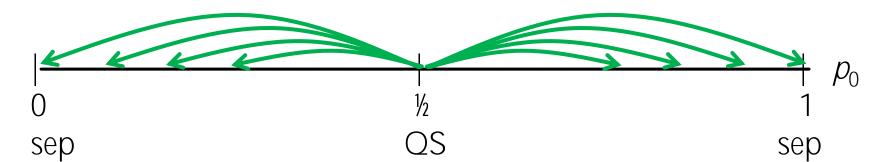
$$|\mathbf{w}\rangle\rangle = \sqrt{p_0}|0\rangle_C|\mathbb{1}_0\rangle\rangle + \sqrt{p_1}|1\rangle_C|\mathbb{1}_1\rangle\rangle$$

Any process can be freely transformed into separable ones

General: majorization-defined ("outwards")

Hierarchy of Q Control of Causal Orders

QS on top (universal in this class)

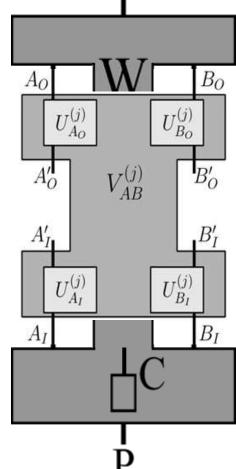


Additional freedoms:

Local unitaries at will before any lab input or after any lab output

Control-qubit basis (also a unitary)

General form ("generalized QS")  $|\mathbf{w}\rangle\rangle = \sqrt{p_0} |\Phi_0\rangle_C |\mathbf{u}_0\rangle\rangle + \sqrt{p_1} |\Phi_1\rangle_C |\mathbf{u}_1\rangle\rangle$   $|\mathbf{u}_0\rangle \coloneqq |\mathbf{u}_{PA}\rangle_{PA_I} |\mathbf{u}_{AB}\rangle_{A_OB_I} |\mathbf{u}_{BF}\rangle\rangle_{B_OF}$   $|\mathbf{u}_1\rangle \coloneqq |\mathbf{u}_{PB}\rangle\rangle_{PB_I} |\mathbf{u}_{BA}\rangle\rangle_{B_OA_I} |\mathbf{u}_{AF}\rangle\rangle_{A_OF}$ with  $\mathbf{u}_{PA}^{\dagger}\mathbf{u}_{BA}\mathbf{u}_{BF}^{\dagger} = \mathbf{1} = \mathbf{u}_{PB}^{\dagger}\mathbf{u}_{AB}\mathbf{u}_{AF}^{\dagger}$ QS universal on this class

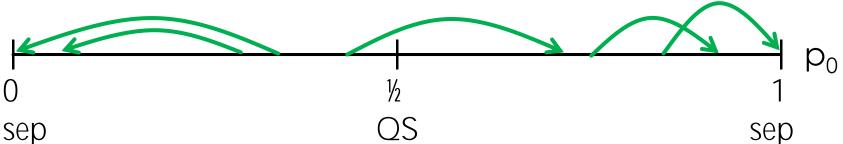


How?  $|w\rangle = \sqrt{p_0} |\Phi_0\rangle_C |\mathbb{1}_0\rangle + \sqrt{p_1} |\Phi_1\rangle_C |\mathbb{1}_1\rangle$ Applying non-demolition measurements on control qubit:

$$\sqrt{C_0} \left( \sqrt{\frac{p_0'}{p_0}} |\Phi_0\rangle \langle \Phi_0|_C + \sqrt{\frac{p_1'}{p_1}} |\Phi_1\rangle \langle \Phi_1|_C \right)$$

Plus lab swap if needed (heralded)

$$\sqrt{C_1} \left( \sqrt{\frac{p_1'}{p_0}} |\Phi_0\rangle \langle \Phi_0|_C + \sqrt{\frac{p_0'}{p_1}} |\Phi_1\rangle \langle \Phi_1|_C \right)$$



It is possible to distill Q control of causal orders!
As reference, quantum switch  $|W\rangle\rangle^{\otimes N} \xrightarrow{\text{free op}} |W_{qs}\rangle\rangle^{\otimes rN}$ Subtlety:  $(W^{A \to B} + W^{B \to A})^{\otimes 2} = \dots + W^{A \to B} \otimes W^{B \to A} + \dots$ 

Sidestepped: separate labs  $W^{A_1 \rightarrow B_1} \otimes W^{B_2 \rightarrow A_2}$ 

Price: no joint operations (as in Costa's talk) [Explored in Guérin et al 1806.10374 (njp)]

$$|\mathbf{w}\rangle\!\rangle^{\otimes N} \stackrel{\text{free op}}{\longrightarrow} |\mathbf{w}_{qs}\rangle\!\rangle^{\otimes rN}$$

Second\* way: single-copy transitions (probabilistic)

Local filtering on control qubit

$$\begin{split} \sqrt{x} |\Phi_0\rangle \langle \Phi_0|_C + \sqrt{y} |\Phi_1\rangle \langle \Phi_1|_C \\ \sqrt{1-x} |\Phi_0\rangle \langle \Phi_0|_C + \sqrt{1-y} |\Phi_1\rangle \langle \Phi_1|_C \\ & x = \min\left\{\frac{p_1}{p_0}, 1\right\} \\ & y = \min\left\{\frac{p_0}{p_1}, 1\right\} \end{split}$$

$$|\mathbf{w}\rangle\!\rangle^{\otimes N} \stackrel{\text{free op}}{\longrightarrow} |\mathbf{w}_{qs}\rangle\!\rangle^{\otimes rN}$$

Second\* way: single-copy transitions (probabilistic)

Local filtering on control qubit

Distillation rate == success prob of each copy

 $r = 2 \min\{p_0, p_1\}$ 

Single-output production is deterministic on average with protected last copy

### FINAL REMARKS AND OPEN QUESTIONS

### Definition of Quantum Control of Causal Orders

- Resource theory of both QCCO and CNS
- Free operations: LOAE, PLS
- Applications:
- Interconversion, hierarchy
- Distillation

#### FINAL REMARKS AND OPEN QUESTIONS

Open questions

- Resource theory for causal networks in general (LOAE, not PLS)?
- Are there different classes of QCCO? Or is the quantum switch really a universal maximum?

What other classes of free operations are there? Are they physically interesting?



#### RANIERI V. NERY

#### LEANDRO AOLITA



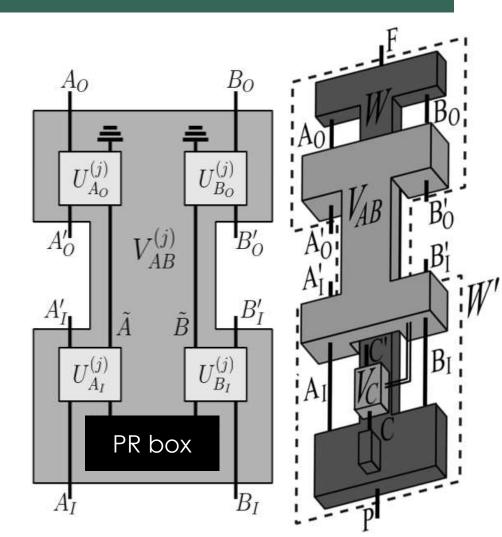
building an n-switch, Thursday @ 11:30

## THANK YOU FOR YOUR ATTENTION! Leandro Aolita's talk FOR MORE INFORMATION, AND ALSO CHECK ARXIV:1903.06180 YOU CAN ASK ME QUESTIONS on experimentally

## **BACKUP SLIDES!**

#### SETS OF FREE OPERATIONS: NSO

- Larger set defined strictly by lack of A-B signaling
- Superset of LOAE
- "Non-signaling operations"



$$|\mathbf{w}\rangle\!\rangle^{\otimes N} \xrightarrow{\text{free op}} |\mathbf{w}_{qs}\rangle\!\rangle^{\otimes rN}$$

First way: exploit joint operations on control qubits

#### Measurements on "excitation-number subspaces"

Low rate r because of restriction to joint operations on labs

■ (feel free to ask me even more later)