Quantum processes on time-delocalized systems

Ognyan Oreshkov

Centre for Quantum Information and Communication, Université libre de Bruxelles

Outline

0) Background
1) The quantum SWITCH on time delocalized systems
2) Realization of a class of isometric extensions of bipartite processes (based on arXiv:1801.07594)
3) Recent (with R. Lorenz and J. Barret): all unitarily extensible bipartite processes are causally separable
4) New (with J. Wechs, Cyril Branciard, ...): realization of processes violating causal inequalities

Quantum systems

Joint probabilities

$$
p(i, j, k, l, m)
$$

Hardy, PIRSA:09060015; Chiribella, D’Ariano, Perinotti, PRA 81, 062348 (2010) [arXiv 2009]

Quantum systems

System $\mathrm{A} \rightarrow$ Hilbert space \mathcal{H}^{A}

Quantum operation from A to $B \rightarrow$ quantum instrument (collection of CP maps):

$$
\left\{\mathcal{M}_{i}^{A \rightarrow B}\right\}_{i \in O}, \quad \text { where } \quad \sum_{i \in O} \mathcal{M}_{i}^{A \rightarrow B}=\overline{\mathcal{M}}^{A \rightarrow B} \quad \text { is CPTP. }
$$

From a global perspective, a system is generally a subsystem (tensor factor of a subspace) of a larger Hilbert space (P. Zanardi, PRL (2001); Zanardi, Lidar, Lloyd, PRL (2004)):

$$
\left(\mathcal{H}^{A} \otimes \mathcal{H}^{\bar{A}}\right) \oplus \mathcal{H}^{K} \cong \mathcal{H}^{\text {large }} \quad \text { (usually at a given time) }
$$

The most general faithful encoding of quantum information
Viola, Knill, Laflamme, JPA (2001); E. Knill, PRA (2006); Kribs and Spekkens PRA (2006)

Quantum systems

A subsystem is defined by the algebra of operators acting (locally) on that systems:

$$
\mathcal{A}^{A}:=\left(\mathcal{A}^{A} \otimes \mathbb{1}^{\bar{A}}\right) \oplus 0^{K}
$$

Example:

$$
\mathcal{H}^{C} \otimes \mathcal{H}^{D} \cong \mathcal{H}^{A^{\prime}} \otimes \mathcal{H}^{B^{\prime}}
$$

$$
O^{A^{\prime}} \equiv O^{A^{\prime}} \otimes \mathbb{1}^{B^{\prime}}:=U\left(O^{A} \otimes \mathbb{1}^{B}\right) U^{\dagger}
$$

Quantum systems

Joint probabilities

$$
p(i, j, k, l, m)
$$

Quantum systems

Joint probabilities

$$
p(i, j, k, l, m)
$$

Quantum systems

Quantum systems

Chiribella, D'Ariano, Perinotti, PRA (2009)

Quantum systems

Can do tomography on it.

Time-delocalized systems: subsystems of Hilbert spaces that are tensor products of systems at different times

Time-delocalized systems: subsystems of Hilbert spaces that are tensor products of systems at different times

The quantum process matrix framework

Alice

No assumption of global causal order
O. O., F. Costa, and Č. Brukner, Nat. Commun. 3, 1092 (2012).

The quantum process matrix framework

Joint probabilities

$$
p\left(\mathcal{M}_{i}^{A}, \mathcal{M}_{j}^{B}, \cdots\right)=\operatorname{Tr}\left[W^{A_{\text {in }} A_{\text {out }} B_{\text {in }} B_{\text {out }} \cdots}\left(M_{i}^{A_{\text {in }} A_{\text {out }}} \otimes M_{j}^{B_{\text {in }} B_{\text {out }}} \otimes \cdots\right)\right]
$$

Process matrix

The quantum process matrix framework

Joint probabilities

$$
p\left(\mathcal{M}_{i}^{A}, \mathcal{M}_{j}^{B}, \cdots\right)=\operatorname{Tr}\left[W^{A_{\text {in }} A_{\text {out }} B_{\text {in }} B_{\text {out }} \cdots}\left(M_{i}^{A_{\text {in }} A_{\text {out }}} \otimes M_{j}^{B_{\text {in }} B_{\text {out }}} \otimes \cdots\right)\right]
$$

1. Non-negative probabilities: $\quad W^{A_{\text {in }} A_{\text {out }} B_{\text {in }} B_{\text {out }} \cdots} \geq 0$
2. Probabilities sum up to 1 :
$\operatorname{Tr}\left[W^{A_{\text {in }} A_{\text {out }} B_{\text {in }} B_{\text {out }} \cdots}\left(M^{A_{\text {in }} A_{\text {out }}} \otimes N^{B_{\text {in }} B_{\text {out }}} \otimes \cdots\right)\right]=1$ on all CPTP $M^{A_{\text {in }} A_{\text {out }}}, N^{B_{\text {in }} B_{\text {out }}}, \ldots$

The quantum process matrix framework

An equivalent formulation as a second-order transformation:
[Quantum supermaps, Chiribella, D'Ariano, and Perinotti, EPL 83, 30004 (2008)]

The process matrix framework

Do such processes have a physical realization?

Physical realization: there can be an experiment in which every element of the mathematical description of the process (Hilbert spaces, operations on them, ...) has a physical counterpart that can be considered a realization of that element.

The quantum SWITCH

A supermap:

Chiribella, D’Ariano, Perinotti, and Valiron, PRA 88, 022318 (2013), arXiv:0912.0195 (2009)

The quantum SWITCH

A supermap:

The quantum SWITCH

A supermap:

The quantum SWITCH

A supermap:

The quantum SWITCH

A process matrix:

The quantum SWITCH

A process matrix:

The process matrix is not causally separable.

However, it cannot violate causal inequalities.

Oreshkov and Giarmatzi, NJP 18, 093020 (2016)
Araujo et al., NJP 17, 102001 (2015)

Experimental realizations of the quantum SWITCH

Where are the operations of Alice and Bob?

Time

Temporal description

Where are the operations of Alice and Bob?

Temporal description (simple version)

Bob at a fixed time
O. O., arXiv:1801.07594

Identifying Alice's operation

O. O., arXiv:1801.07594

Identifying Alice's operation

Identifying Alice's operation

With respect to A_{l} and A_{0}, the experiment has the structure of a circuit with a cycle.

Are there more general processes that exist on timedelocalized systems?

Time

Circuits with coherent control of the times of the operations
(includes the symmetric implementation of the SWITCH)

Unitarily extendible processes

Araujo, Feix, Navascues, Brukner, Quantum 1, 10 (2017)

Claim:

All unitary extensions of bipartite processes have realizations on time-delocalized systems

O. O., arXiv:1801.07594

Proof:

Chiribella, D'Ariano, and Perinotti, EPL 83, 30004 (2008)

Proof:

Proof:

\tilde{A}_{1} - a subsystem of $D_{0} B_{0}$.
$\tilde{\mathrm{A}}_{0}$ - a subsystem of $\mathrm{C}_{1} \mathrm{~B}_{1}$.

Proof:

\tilde{A}_{1} - a subsystem of $D_{0} B_{0}$.
$\tilde{\mathrm{A}}_{0}$ - a subsystem of $\mathrm{C}_{1} \mathrm{~B}_{1}$.

Proof:

\tilde{A}_{1} - a subsystem of $D_{0} B_{0}$.
\tilde{A}_{o} - a subsystem of $C_{\mid} B_{1}$.

Proof:

Similarly can prove realizability of the following class:

\mathcal{V} is an isometric channel that maps a tensor factor of $D_{2} B_{2}$ onto A_{1}.

Theorem: all bipartite processes that obey the unitary extension postulate are causally separable.

Hence, the unitary extensions are just variations of the quantum SWITCH.

With R. Lorenz and J. Barrett, Cyclic Quantum Causal Models, in preparation.

Idea behind proof

We have the following no-signaling constraints for the unitary channel of the 4-partite process:

(lack of arrow means no signaling)

This follows from the types of terms permitted in a process matrix.

Consider the reduced process obtained by tracing our Charlie:

Let \bar{U} denote the process matrix (the transposed Choi state of the channel $\overline{\mathcal{U}}$).
Then, there exists a decomposition $\quad \mathcal{H}^{D_{o}}=\bigoplus_{i} \mathcal{H}^{L_{i}} \otimes \mathcal{H}^{R_{i}}$
such that $\bar{U}^{A_{I} A_{o} B_{I} B_{o} D_{o}}=\bigoplus_{i} \rho^{A_{o} B_{I} L_{i}} \otimes \rho^{A_{I} B_{o} R_{i}}$
[J.-M. Allen et al., PRX 7, 031021 (2017); J. Barrett, R. Lorenz, O. O., in preparation]

Bad news?

Not at all.

Theorem! All tripartite unitarily extendible tripartite processes, including their unitary extensions, have realizations on timedelocalized systems.

This includes processes violating causal inequalities!
[E.g., the classical noncausal process by Baumeler and Wolf, NJP (2016)]

With J. Wechs, C. Branciard, ... , in preparation.

Idea of proof

variation of the quantum SWITCH on Alice and Bob

There is a universal way of implementing all such processes, such that Alice and Bob act on fixed time-delocalized systems:

Time ${ }^{\uparrow}$
(ancillas suppressed)

Charlie's operation is within the comb around Alice and Bob.

The systems it acts on can be found similarly to the bipartite case.

Example: Bameler and Wolf, NJP 18, 013036 (2016)

$$
\begin{aligned}
& X_{A^{\text {in }}}=\neg X_{B^{\text {out }}} \wedge X_{C^{\text {out }}} \\
& X_{B}^{\text {in }}=\neg X_{C^{\text {out }}} \wedge X_{A^{\text {out }}} \\
& X_{C^{\text {in }}}=\neg X_{A^{\text {out }}} \wedge X_{{ }^{\text {out }}}
\end{aligned}
$$

Violates causal inequalities.

Example: Bameler and Wolf, NJP (2016)

$$
\begin{aligned}
& X_{A}{ }_{A}^{\text {in }}=\neg X_{X^{\text {out }} \wedge} \wedge X_{C^{\text {out }}} \\
& X_{B}^{\text {oin }}=\neg X_{C}^{\text {out }} \wedge X_{A}^{\text {out }} \\
& X_{C}^{\text {in }}=\neg X_{A}^{\text {out }} \wedge X_{B}^{\text {out }}
\end{aligned}
$$

Violates causal inequalities.

Admits unitary extension [Araujo et al., Quantum (2017)]

From Julian Wechs:

Closely linked to a circuit previously found by Allard Guérin and Brukner, NJP (2018)

There are (time-nonlocal) classical variables that violate causal inequalities.

1) They form a cyclic causal model as above, which can be tested.
2) Under the assumption of closed laboratories (no extra arrows apart from those shown), the correlations cannot be explained by dynamical causal order.
