The future of quantum theory

Ding Jia (贾丁)
Perimeter Institute
University of Waterloo

Causality in the quantum world September 18, 2019 Anacapri, Italy Part I: Introduction

Storyline of quantum theory

The past		
Quantum mechanics of particles	1920s	Matrix/Wave Mechanics
The present		
Quantum theory of fields	1970s	Standard Model
The future?		
Quantum theory of correlations?	2020-	Quantum Gravity?

Surpass frameworks

For fundamental physics, we need good predictions.

General frameworks	Specific models/theories		
QFT framework global state	QED, QCD, Higgs mechanism etc.		
(Non-)relativistic QM framework wave function	Relativistic quantum particle $(\partial^a\partial_a-m^2)\psi=0 \text{ etc.}$		
Quantum information framework	?		

Maybe theories tell us what processes are allowed

Surpass wave function/particle

$(\partial^a \partial_a - m^2)\psi = 0$ $\langle y|x\rangle \neq 0$

Spacelike correlations are perfectly fine

Field Correlation

Particle/
wave
function

Challenges

- Specific theories
- Relativity
- Quantum gravity

Proposals

- 1. Reformulate quantum field theory in terms of correlational quantum theory
- 2. New approach to QG (World Quantum Gravity) Idea: $g_{ab} \rightarrow \sigma(x,y)$

Main result – World Quantum Gravity (arXiv: 1909.05322)

$$\sum_{\Gamma} \prod_{i} \int dx_{i} \frac{V[\Gamma]}{N[\Gamma]} \prod_{k \in \Gamma} G_{k}$$

Non-perturbative, background independent

$$\sum_{\Gamma} \sum_{\sigma} \frac{V[\gamma_{\Gamma}]}{N[\gamma_{\Gamma}, \sigma]} \prod_{h \notin \gamma_{\Gamma}} \underbrace{\Delta_{h}^{3\alpha_{h}\Delta_{h}^{-1}}}_{H_{h}} \prod_{k \in \gamma_{\Gamma}} \underbrace{\int \frac{dl_{k}}{(4\pi i l_{k})^{2}} \Delta_{k}^{3C_{k}} \exp\left\{i\frac{\sigma_{k}}{2l_{k}} - im^{2}l_{k}\right\}}_{D_{k}}$$

Part II: Reformulate QFT

Hilbert space formalism

- Channels (Choi operators)
 A, B, C, ...
- Composition $A*B:=Tr_a[A^{Ta}B]$

Who correlates with whom?

Correlation diagram formalism

- Correlation diagram
- Composition matching

Correlation diagrams

 Correlation type decomposition (Oreshkov, Costa, Brukner; ...)

General correlation diagrams

Idea: correlations are mediated

- Types and coefficients
- Composition by matching

A diagrammatic paradigm for defining theories

Feynman diagrams as topological classes

QFT: arbitrary decomposition

Reason:

Types and coefficients specified at every point

specific theories

QFTs are simple!

How is this possible?

- Essence of QFT: correlations mediated in ST
- Reason for Feynman diagrams: correlation topology classes
- Quantum fields not necessary to capture the mediation of correlations
- Haag's perspective: fields are coordinates (Borcher classes) $x \to x'; \phi \to \phi'$
- "Coordinate-free" description

Part III: World Quantum Gravity

$$N: \rho \sum_i \mapsto K_i \rho K_i^{\dagger}$$

probability

amplitude

theory

Idea: $g_{ab} \rightarrow \sigma(x,y)$

Path integral approach
$$A = \sum_{\alpha}$$

$$A = \sum_{g} A_{QG}[g] \sum_{m} A_{M}[g, m]$$

World Quantum Gravity (WQG)

QFT
$$A = \int Dg_{ab} e^{iS_{EH}[g_{ab}]} \int D\phi e^{iS_{M}[g_{ab},\phi]}$$

$$A = \sum_{\sigma} A_{QG}[\sigma] \sum_{\gamma} A_{M}[\sigma, \gamma]$$

Van Vleck-Morette determinant

Worldline formalism

What is σ ?

$\sigma(x,y) = \frac{\pm 1}{2} s(x,y)^2$ - Synge world function

$$\sigma(x,y) = \frac{1}{2}\eta_{ab}(y-x)^a(y-x)^b$$
$$g_{ab}(x) = -\lim_{y \to x} \frac{\partial}{\partial x^a} \frac{\partial}{\partial y^b} \sigma(x,y)$$

Why σ ?

Simple

$$\sigma(x,y) = \sigma(x',y')$$

Matter-friendly

$$A_M \to e^{i\sigma/2l - im^2l}$$

Causal structure manifest

$$\sigma = < > 0$$

I. Topological setup (the case of local relational variables)

 $g_{ab}(x)$ – pointwise defined

II. Matter amplitude (Feynman diagrams are topological classes)

Feynman diagrams

$$(\Box + m^2 + \xi R)\phi(x) = 0$$

Scalar field is not just for scalar field! Feynman, DeWitt, Parker... "Worldline formalism":

External, spacetime dof in worldline location;

γ correlation diagrams

$$G(x,y) = i \int_0^\infty \langle x, l | y, 0 \rangle e^{-im^2 l} dl$$

$$\langle x, l | y, 0 \rangle = \int d[x(l')] \exp\left\{i \int_0^l dl' \left[\frac{1}{4} g_{ab} \frac{dx^a}{dl'} \frac{dx^b}{dl'} - (\xi - \frac{1}{3}) R(l')\right]\right\}$$

$$A_M[\mathbf{k} \in \gamma, g] = \int \frac{dl_k}{(4\pi i l_k)^2} \exp\left\{i\frac{\sigma_k}{2l_k} - i(\xi - \frac{1}{3})R_k l_k - im^2 l_k\right\}$$
$$A_M[\gamma, g] = \prod_{k \in \gamma} A_M[k \in \gamma, g] V[\gamma]$$

III. Gravity amplitude (Parker's magic)

IV. Main formula (breaking up propagators into modified pieces)

3 Matter: Propagators broken into pieces

$$\sum_{\Gamma} \sum_{\sigma} \frac{V[\gamma_{\Gamma}]}{N[\gamma_{\Gamma}, \sigma]} \prod_{h \notin \gamma_{\Gamma}} \Delta_{h}^{3\alpha_{h}} \Delta_{h}^{-1} \prod_{k \in \gamma_{\Gamma}} \int \frac{dl_{k}}{(4\pi i l_{k})^{2}} \Delta_{k}^{3C_{k}} \exp\left\{i \frac{\sigma_{k}}{2l_{k}} - i m^{2} l_{k}\right\}$$

$$C_{k} = \left(\frac{1}{s_{k}} + \frac{1}{l_{k}}\right) \left[\alpha_{k} s_{k} \Delta_{k}^{-1} - (\xi - \frac{1}{3}) l_{k}\right]$$

(2) Gravity: Non-perturbative treatment

analysis

Preliminary numerical analysis
$$\sum_{\Gamma} \sum_{\sigma} \frac{V[\gamma_{\Gamma}]}{N[\gamma_{\Gamma},\sigma]} \prod_{h \notin \gamma_{\Gamma}} \underbrace{\Delta_{h}^{3\alpha_{h}\Delta_{h}^{-1}}}_{H_{h}} \prod_{k \in \gamma_{\Gamma}} \underbrace{\int \frac{dl_{k}}{(4\pi i l_{k})^{2}} \Delta_{k}^{3C_{k}} \exp\left\{i\frac{\sigma_{k}}{2l_{k}} - im^{2}l_{k}\right\}}_{D_{k}}$$

$$\Delta(s,\rho) = \left[\sqrt{\frac{\rho}{3}} \ s \ \csc(s\sqrt{\frac{\rho}{3}})\right]^3 \int d\rho_h \int d\sigma_h \Delta_h^{3\alpha_h \Delta_h^{-1}} B^{s_h}$$

$$\int_{-a^2/2}^{a^2/2} d\sigma \Delta^{3\alpha\Delta^{-1}} B^s = 2 \int_0^a ds \ s \Delta^{3\alpha\Delta^{-1}} B^s$$

$$\int_0^\infty d\rho \int_{-a^2/2}^{a^2/2} d\sigma \Delta^{3\alpha\Delta^{-1}} B^s$$

B\α	0.	0.2	0.4	0.6	0.8	1.
0.25	4348.37	4814.91	5326.67	5932.13	6650.38	7510.03
0.5	4388.28	4858.77	5375.17	5986.14	6710.92	7578.33
0.75	4430.65	4905.33	5426.67	6043.47	6775.17	7650.82
1.	4481.73	4961.46	5488.75	6112.63	6852.69	7738.29
1.25	4545.96	5032.04	5566.83	6199.53	6950.14	7848.2
1.5	4627.45	5121.55	5665.88	6309.83	7073.77	7987.72
1.75	4730.38	5234.71	5791.02	6449.14	7229.86	8163.81
2.	4870.94	5376.13	5947.45	6623.36	7425.16	8384.1

Correlation diagram Localizing space(s) route to physics Types+ Scalar field (M,g) φ Coefficients Quantization (M,g) $\int D\phi$ Compose (M,g)Feynman diagrams Correlation diagrams Perturbation $\int D\phi \sum \lambda_i \phi^i$

Correlation diagram route to physics

Localizing space(s)

Correlation diagram route to physics

Correlation diagram route to physics

Thank you!

$$\sum_{\Gamma} \sum_{\sigma} \frac{V[\gamma_{\Gamma}]}{N[\gamma_{\Gamma}, \sigma]} \prod_{h \notin \gamma_{\Gamma}} \underbrace{\Delta_{h}^{3\alpha_{h}\Delta_{h}^{-1}}}_{H_{h}} \prod_{k \in \gamma_{\Gamma}} \underbrace{\int \frac{dl_{k}}{(4\pi i l_{k})^{2}} \Delta_{k}^{3C_{k}} \exp\left\{i\frac{\sigma_{k}}{2l_{k}} - im^{2}l_{k}\right\}}_{D_{k}}$$

