

Communication through Quantum Causal Structures

Fabio Costa

Causality in the Quantum World, Anacapri

- D. Jia, F. C., "Causal order as a resource for quantum communication", arXiv:1901.09159 [quant-ph] (2019).
- K. Goswami, F.C., in progress.

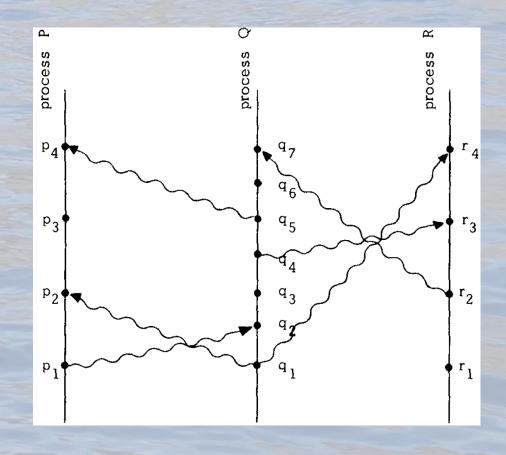
Causal order can be unknown

Distributed systems, quantum networks

Operating R. Stockton Gaines
Systems Editor

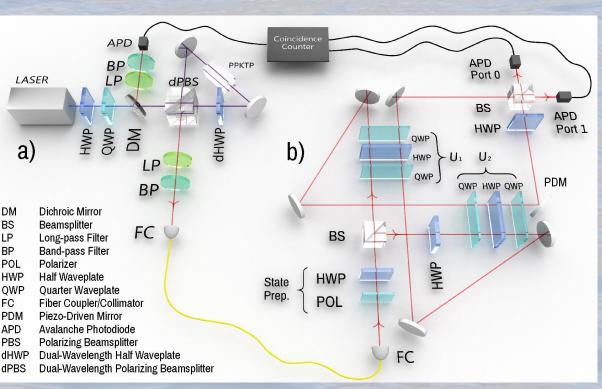
Time, Clocks, and the Ordering of Events in a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.



Causal order can be indefinite

In the lab



Procopio et al., Nat. Comm. 6, 7913 (2015)

Quantum + gravity

Zych et al., Nat Comm. 10, 3772 (2019)

Communication in unknown/indefinite causal order?

- Communication settings
 - Single shot/asymptotic
- Classical communication
 - Generalised Holevo bound
 - Entropic causal inequalities
- Quantum communication (definite, unknown order)
 - Bound on quantum capacity
 - No two-way quantum communication

General quantum communication resource

Each party can perform one operation on a quantum system

input: system 'just before' operation

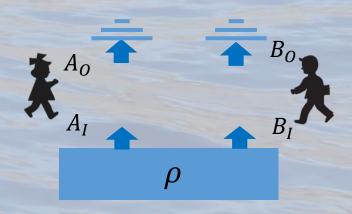
output: system 'just after' operation



Example:

Shared state, no communication

Choi: $W^{A_I A_O B_I B_O} = \rho^{A_I B_I} \otimes \mathbb{I}^{A_0 B_O}$

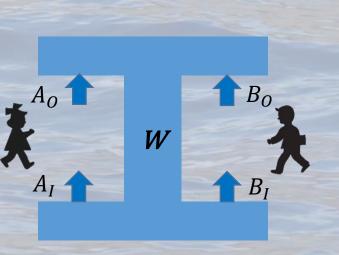


General quantum communication resource

Each party can perform one operation on a quantum system

input: system 'just before' operation

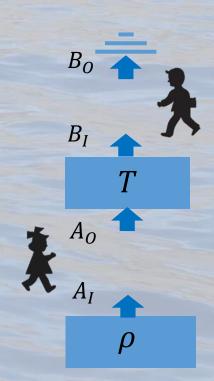
output: system 'just after' operation



Example:

One way, $A \rightarrow B$, Markov

Choi: $W^{A_I A_O B_I B_O} = \rho^{A_I} \otimes T^{A_0 B_I} \otimes \mathbb{I}^{B_O}$

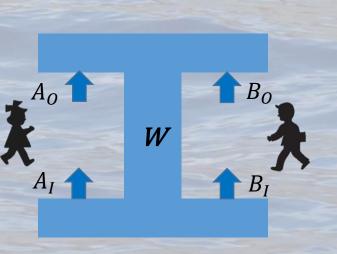


General quantum communication resource

Each party can perform one operation on a quantum system

input: system 'just before' operation

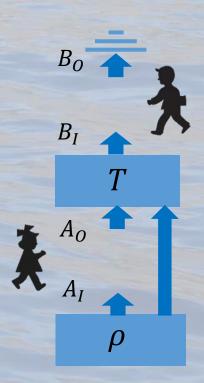
output: system 'just after' operation



Example:

One way, $A \rightarrow B$, memory

Choi: $W^{A_I A_O B_I B_O} = \widetilde{W}^{A_I A_O B_I} \otimes \mathbb{I}^{B_O}$

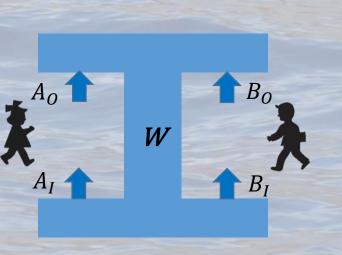


General quantum communication resource

Each party can perform one operation on a quantum system

input: system 'just before' operation

output: system 'just after' operation



Example:

Causally separable process

Classical uncertainty of causal order

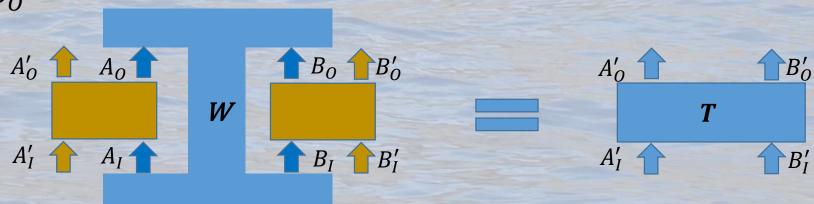
Choi:

$$W = p W^{A < B} + (1 - p) W^{B < A}$$

Communication through a process

Local operations with additional quantum **inputs** A'_{I} , B'_{I} quantum **outputs**, A'_{O} , B'_{O}

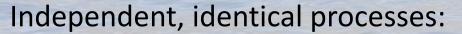
Turn process into bipartite channel



Use channel for communication $A \leftrightarrow B$

Choi: $T^{A'_{I}B'_{I}A'_{O}B'_{O}} = \text{Tr}[(M^{A_{I}A'_{I}A_{O}A'_{O}} \otimes M^{B_{I}B'_{I}B_{O}B'_{O}}) \cdot W^{A_{I}A_{O}B_{I}B_{O}}]$

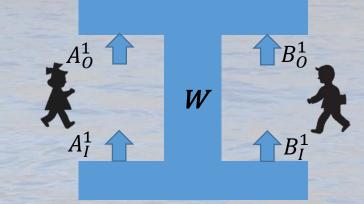
Multiple uses of resource without assigned causal order

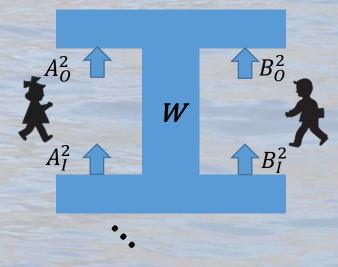


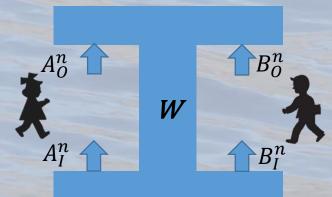
$$W = W^1 \otimes \cdots \otimes W^n$$

"party": single access to individual copy

"agent": coordinated action of multiple parties







Multiple uses of resource without assigned causal order

Independent, identical processes:

$$W = W^1 \otimes \cdots \otimes W^n$$

"party": single access to individual copy

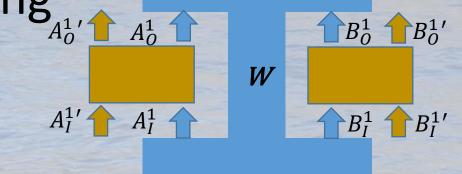
"agent": coordinated action of multiple parties

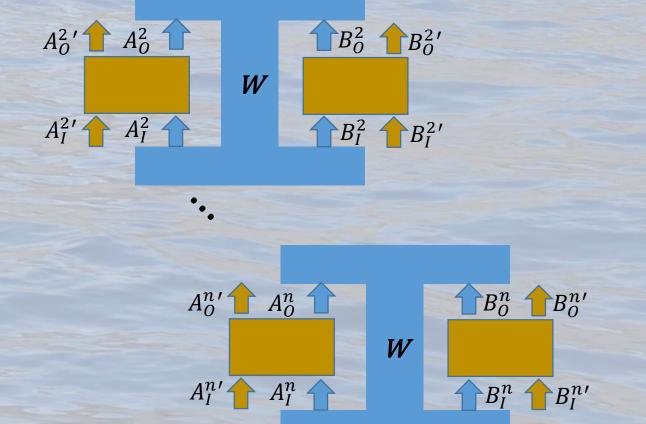
"basic" setting:

No prior causal relation among parties

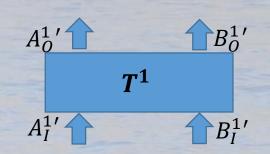
$$M^A = M^{A^1} \otimes \cdots \otimes M^{A^n}$$

$$M^B = M^{B^1} \otimes \cdots \otimes M^{B^n}$$





Multiple uses of resource without assigned causal order

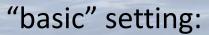


Independent, identical processes:

$$W = W^1 \otimes \cdots \otimes W^n$$

"party": single access to individual copy

"agent": coordinated action of multiple parties

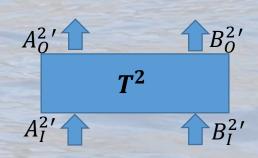


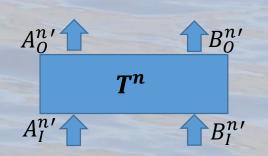
No prior causal relation among parties

$$M^A = M^{A^1} \otimes \cdots \otimes M^{A^n}$$

$$M^B = M^{B^1} \otimes \cdots \otimes M^{B^n}$$

(Other, "causal order assisted" settings possible)





For communication, include global encoding/decoding within agents (not among agents)

Goal, $A \rightarrow B$:

Approximate identity channel $A_E \rightarrow B^D$

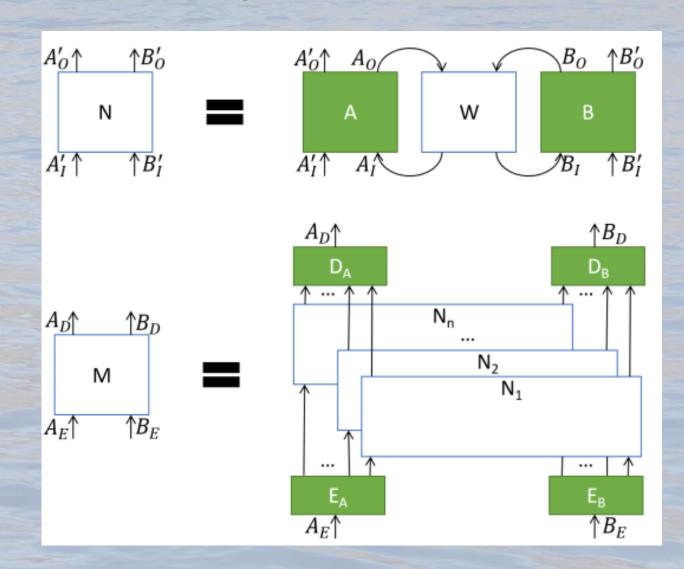
Channel capacity:

Asymptotic rate #qubits/n

For classical capacity:

Replace

 $A_E \to x, B^D \to b$ qubits \to bits



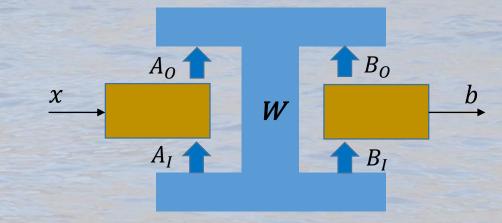
Classical communication

Single shot

Encoding with probability p_x ,

$$P(x,b) = p_x \operatorname{Tr} \left[\left(M_{|x}^{A_I A_O} \otimes M_b^{B_I B_O} \right) \cdot W^{A_I A_O B_I B_O} \right]$$

$$M_{|x}, \sum_b M_b \text{ CPTP}$$



Compare with

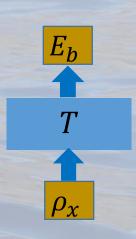
$$P(x,b) = p_x \text{Tr}[E_b \mathcal{T}(\rho_x)]$$

$$\rho_x \text{ states, } \sum_b E_b = \mathbb{I}$$

Holevo bound on mutual information:

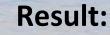
$$I(B:X) \le S\left(\sum_{x} p_{x} \mathcal{T}(\rho_{x})\right) - \sum_{x} p_{x} S(\mathcal{T}(\rho_{x})) \le \log d$$

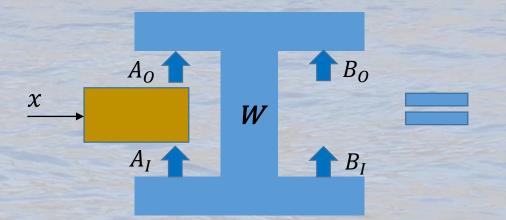
(note: include memory—shared entanglement)

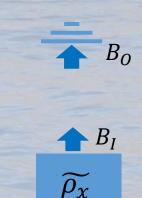


$$S(\rho) = -\text{Tr}\rho \log \rho$$

Generalised Holevo bound



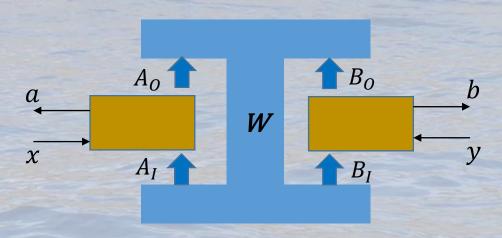




$$I(B:X) \le S\left(\sum_{x} p_{x} \, \widetilde{\rho_{x}}\right) - \sum_{x} p_{x} \, S(\widetilde{\rho_{x}}) \le \log d_{B_{I}}$$

Asymptotic classical capacity: $C^{A \to B}(W) \le \log d_{B_I}$

Two-way communication



Classically uncertain order: $W = p W^{A < B} + (1 - p) W^{B < A}$

Dimension-dependent entropic causal inequality:

$$I(B:X) + I(A:Y) \le \log d$$

No violation known

Cf Miklin et al., New J. Phys. 19, 113041 (2017)

Quantum communication with uncertain order

$$W = p W^{A < B} + (1 - p) W^{B < A}$$

Quantum capacity $A \rightarrow B$: Asymptotic rate d_{A_E}/n

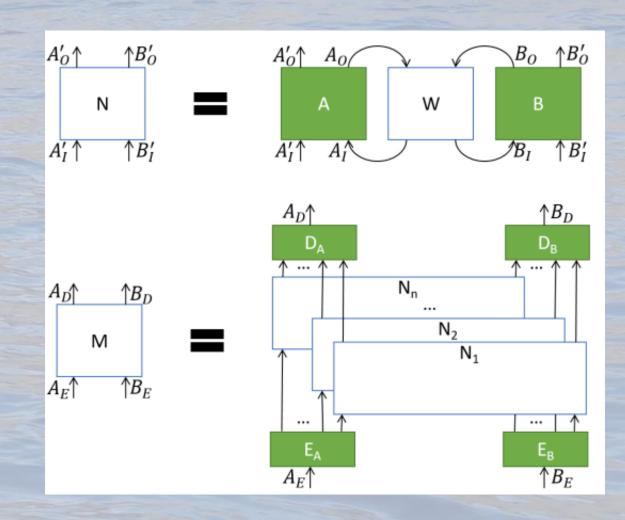
Results:

- $W^{B \prec A}$ can be replaced by white noise
- W simulatable by erasure channel

$$\rho \to p\rho + (1-p)|e\rangle\langle e|$$

Quantum capacity known:

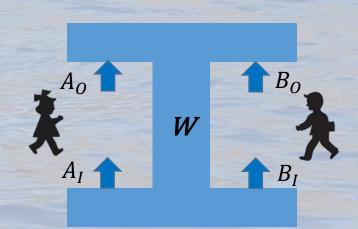
$$Q = \max\{0, (2p - 1) \log d\}$$



Quantum communication with uncertain order

$$W = p W^{A < B} + (1 - p) W^{B < A}$$

Quantum capacity $A \to B$: $Q \le \max\{0, (2p-1) \log d_{B_O}\}$



Consequences:

- Q = 0 if $p \le \frac{1}{2}$
- Two-way quantum communication not possible

Includes all processes with physical interpretation (e.g., switch)

Unknown for more general processes

Conclusions

- Communication tasks extend to non-fixed-order scenarios
- Classical communication: no advantage in one-way capacity
 - Open: advantages for multipartite/combinations of capacities?
- Quantum communication requires $p > \frac{1}{2}$ "correct" order
 - Causal order resource for quantum communication
 - Open: two-way quantum communication using indefinite causal order?
- To explore: other communication settings
 (e.g., assisted by entanglement, causal order,...)