FIXED POINTS OF QUANTUM EVOLUTION ON INDEFINITE CAUSAL STRUCTURES

Causality in the Quantum World Anacapri, September 2019

Amin Baumeler IQOQI-Vienna, Vienna

OUTLINE

> Prelude:
On causality and the process-matrix framework
> Motivation:
What we want to do and why: Find fixed points
> Intermezzo and Intermezzo ${ }^{2}$:
The classical case and computational complexity
> Preliminary results:
Recursive quantum fixed points
> Finale:
Challenges

ON CAUSALITY

> Cause-effect relations

- Traditional assumptions
a) No cycles
b) „fixed"

MOTIVATIONS TO RELAX THESE ASSUMPTIONS

- Technical interest; Why not?!
- Cultural-philosophical reasons Parmenides, etc.
> General relativity

Einstein, Lanczos, Gödel, Thorne, etc.
> Quantum theory
 (superposition principle)

- Overcome conceptual challenges of quantum theory?
E.g., Parisian zig-zag model

THE PROCESS-MATRIX FRAMEWORK

> Assumptions

i) Isolated parties with
 single interaction
ii) For every choice of quantum
instruments S_{1}, S_{2},
probabilities $P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right)$ well defined.
iii) Probabilities are linear in the choice of instruments.

THE PROCESS-MATRIX FRAMEWORK

- Assumptions

i) Isolated parties with single interaction
ii) For every choice of quantum instruments S_{1}, S_{2},

probabilities $P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right) \quad P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right)=\operatorname{Tr}\left(\left(S_{1}^{x_{1}, a_{1}} \otimes S_{2}^{x_{2}, a_{2}}\right) W\right)$ well defined.
iii) Probabilities are linear in the choice of instruments.

THE PROCESS-MATRIX FRAMEWORK

- Assumptions

i) Isolated parties with single interaction
ii) For every choice of quantum instruments S_{1}, S_{2},

probabilities $P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right) \quad P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right)=\operatorname{Tr}\left(\left(S_{1}^{x_{1}, a_{1}} \otimes S_{2}^{x_{2}, a_{2}}\right) W\right)$ well defined.
iii) Probabilities are linear in the choice of instruments.

The process matrix is a quantum channel!

CAUSAL INEQUALITIES

> Device independent
> Describe the facets of the correlations obtainable in a causal way.

- Example: $\frac{1}{2}\left[P\left(x=b \mid b^{\prime}=0\right)+P\left(y=a \mid b^{\prime}=1\right)\right] \leq 3 / 4$
> The process-matrix framework allows for violations of such inequalities!
> Gretchenfrage: Can we realize such violations?!
Ognyan: with space non-local variables.

CAUSAL INEQUALITIES

> Gretchenfrage: Can we realize violations?!
> Are they „just" a mathematical artifact?
(similar to the Gretchenfrage on the existence/realizability of closed time-like curves)
> If it's a mathematical artifact, we better find reasons for that!
> One approach (that failed yet remains actual):
Restrict the framework to purifiable process matrices.

Implication: Necessity of „source" P and „sink" F

M. Araújo, A. Feix, M. Navascués, Č. Brukner, Quantum 1, 10 (2017).

CONNECTION TO MATEUS' TALK

> Equivalence: Process-matrix framework and linear postselected closed time-like curves:

- Induced operations from P to F :

P-CTC: $\operatorname{Tr}_{1,2}[(A \otimes B \otimes I) U] / z$ (fragile)
Process matrices: $\forall A, B$ unitary: $\operatorname{Tr}_{1,2}[(A \otimes B \otimes I) U]$ unitary

EXAMPLES

Alice before Bob: BA

Quantum switch

Violation of causal inequality

M. Araújo, P. Allard Guérin, ÄB, PRA 96, 52315 (2017).

MAIN QUESTION OF THIS TALK

- Can we talk about the quantum states within? General believe in P-CTC and two-stateformalism community: no.

Crucial difference: linearity.
> Motivations to pose this question:

- Technical challenge; CTCs?
- It is possible in the classical special case
- Might help to characterize process matrices
- Distinguish between violating and non-violating processes?
- Challenge Mateus' challenge presented in his talk:

Limits on the computational power

INTERMEZZO: THE CLASSICAL CASE

> Violations of causal inequalities is not a feature of quantum theory.

- With three parties or more: Classical violations possible.
- We know which processes are purifiable (can be made reversible)
> (Caution: Superluminal signaling without logical problems!)
- Characterization:
$W: A \times B \rightarrow A \times B$ is a process iff

$\forall f: A \rightarrow A, g: B \rightarrow B \exists!(x, y):(x, y)=W(f(x), g(y))$
likewise for more parties.

Unique fixed point for every choice of f, g.

INTERMEZZO: THE CLASSICAL CASE

- Characterization:
$W: A \times B \rightarrow A \times B$ is a process iff
$\forall f: A \rightarrow A, g: B \rightarrow B \exists!(x, y):(x, y)=W(f(x), g(y))$

likewise for more parties.
> Interpretation:
Given the boundary conditions (W, f, g) states are uniquely determined (fixed point).
No grandfather antinomy (no overdetermination)
No information antinomy (no underdetermination)

INTERMEZZO: THE CLASSICAL CASE

- Characterizatio
$W: A \times B \rightarrow A$
$\forall f: A \rightarrow A, g: B$
likewise for mo
> Interpretation: Given the boun determined fixed po No grandfather No information

Three-party process (classical)

a.b.c	$\neg \mathrm{b} \wedge \mathrm{c}, ~ \neg \mathrm{c} \wedge \mathrm{a}, ~ \neg \mathrm{a} \wedge \mathrm{b}$
0,0,0	0,0,0
0,0,1	1,0,0
0,1,0	0,0,1
0,1,1	0,0,1
1,0,0	0,1,0
1,0,1	1,0,0
1,1,0	0,1,0
1,1,1	0,0,0

INTERMEZZO: THE CLASSICAL CASE

- Characterization:
$W: A \times B \times C \rightarrow A \times B \times C$ is a process iff

$\forall f: A \rightarrow A, g: B \rightarrow B, c \exists!x, y, z:(x, y, z)=W(f(x), g(y), c)$
likewise for more parties.
- Interpretation:

Given the boundary conditions (W, f, g, c) states are uniquely determined (fixed point).
No grandfather antinomy (no overdetermination)
No information antinomy (no underdetermination)

INTERMEZZO: THE CLASSICAL CASE AND COMPUTATION

> Helpful to upper bound the computational power of classical deterministic processes to UP \cap coUP.

> Problems in UP n coUP:

- factoring
- discrete log
- parity games (quantum algorithm?)

BACK TO THE QUANTUM CASE

- Is there a unique quantum fixed point for every choice of U_{f}, U_{g} unitary and input (state at P)?

BACK TO THE QUANTUM CASE

- Observations:
- Fixed points - if they exist - would be entangled with the input on P.
(for different inputs there might be different fixed points)
- The process W might entangle the input on P with the rest!

QUANTUM „FIXED POINTS"

> Make use of superposition / entanglement

- Single party:

> We know the single-party characterization: States

QUANTUM „FIXED POINTS"

- What is the fixed point?

- Ansatz:

There exists a basis $\left\{\left|b_{i, j}\right\rangle\right\}_{I \times J}$ such that
$\forall i, j \in I \times J \quad \exists!\mathrm{x}: U^{\prime}|x\rangle\left|b_{i, j}\right\rangle=|x\rangle\left|b_{i, j}^{\prime}\right\rangle$

Computational basis (fixed)
$>$ Easy to see: $\left|b_{i, j}\right\rangle=Q^{\dagger}|i, j\rangle$ and $x=i$.
$>$ Description of the evolution $\operatorname{Tr}_{1}\left[U^{\prime}\right]$ for a basis $\left\{\left|b_{i, j}\right\rangle\right\}_{I \times J}$.

QUANTUM „FIXED POINTS" IN SUPERPOSITION

- Description of the evolution $\operatorname{Tr}_{1}\left[U^{\prime}\right]$ for a basis:

$$
U^{\prime}|i\rangle\left|b_{i, j}\right\rangle=|i\rangle\left|b_{i, j}^{\prime}\right\rangle
$$

> For a general input $|\varphi\rangle$:
1.) Express in $\left\{\left|b_{i, j}\right\rangle\right\}_{I \times J}:|\varphi\rangle=\sum_{i, j} \beta_{i, j}\left|b_{i, j}\right\rangle$
2.) Entangle with respective fixed points: $\sum_{i, j} \beta_{i, j}|i\rangle\left|b_{i, j}\right\rangle$
3.) Evolve through $U^{\prime}: \sum_{i, j} \beta_{i, j}|i\rangle\left|b_{i, j}^{\prime}\right\rangle$
4.) Disentangle from respective fixed points:

$$
\sum_{i, j} \beta_{i, j}\left|b_{i, j}^{\prime}\right\rangle=\operatorname{Tr}_{1}\left[U^{\prime}\right]|\varphi\rangle
$$

QUANTUM „FIXED POINTS" IN SUPERPOSITION

> Circuit picture

> For a general input $|\varphi\rangle$:
1.) Express in $\left\{\left|b_{i, j}\right\rangle\right\}_{I \times J}:|\varphi\rangle=\sum_{i, j} \beta_{i, j}\left|b_{i, j}\right\rangle$
2.) Entangle with respective fixed points: $\sum_{i, j} \beta_{i, j}|i\rangle\left|b_{i, j}\right\rangle$
3.) Evolve through $U^{\prime}: \sum_{i, j} \beta_{i, j}|i\rangle\left|b^{\prime}{ }_{i, j}\right\rangle$
4.) Disentangle from respective fixed points:

$$
\sum_{i, j} \beta_{i, j}\left|b_{i, j}^{\prime}\right\rangle=\operatorname{Tr}_{1}\left[U^{\prime}\right]|\varphi\rangle
$$

QUANTUM „FIXED POINTS" IN SUPERPOSITION

- Single party:

> Two parties: Apply recipe recursively.

QUANTUM „FIXED POINTS" IN SUPERPOSITION

- Recursive application:

QUANTUM „FIXED POINTS" IN SUPERPOSITION

> Recursive application:
1.) Contract Alice's CTC only (Single-party process)

This implements the unitary $\operatorname{Tr}_{1}\left[U_{2}{ }^{\prime}\right]$

QUANTUM „FIXED POINTS" IN SUPERPOSITION

- Recursive application: 1.) Contract Alice's CTC only (Single-party process) 2.) Contract Bob's CTC (Single-party process)

$U_{2}{ }^{\prime}$

This implements the unitary $\operatorname{Tr}_{1,2}\left[U_{2}{ }^{\prime}\right]$

QUANTUM „FIXED POINTS" IN SUPERPOSITION

> For more parties:
Continue recursively, contract one by one.

> What do we get?
A state as input to U_{2}, which describes all fixed points.

CHALLENGES

> Digest...

> Closed form instead of recursive application?
$>$ What properties about the process can we read off the fixed points?
Violations of causal inequalities?
> Simulations / Show computational limitations!
> Describe evolution in CTCs

GRAZIE MILLE

