

FIXED POINTS OF QUANTUM EVOLUTION ON INDEFINITE CAUSAL STRUCTURES

Causality in the Quantum World Anacapri, September 2019

Ämin Baumeler IQOQI-Vienna, Vienna

OUTLINE

► Prelude:

On causality and the process-matrix framework

Motivation:

What we want to do and why: Find fixed points

Intermezzo and Intermezzo²: The classical case and computational complexity

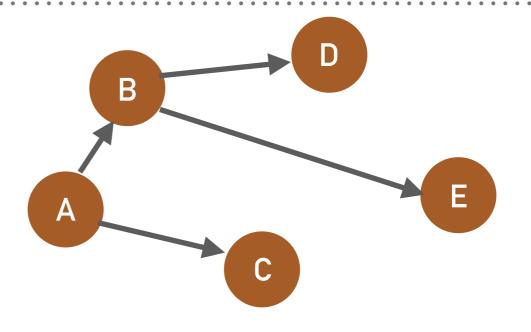
> Preliminary results:

Recursive quantum fixed points

Finale: Challenges

ON CAUSALITY

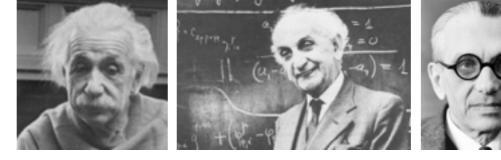
Cause-effect relations

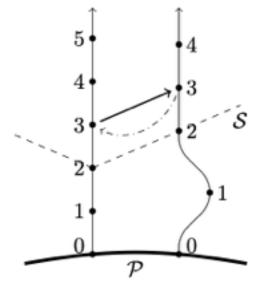


- Traditional assumptions
 a) No cycles
 - b) "fixed"

MOTIVATIONS TO RELAX THESE ASSUMPTIONS

- Technical interest; Why not?!
- Cultural-philosophical reasons
 Parmenides, *etc*.
- General relativity
 Einstein, Lanczos, Gödel, Thorne, etc.





- Quantum theory
 (superposition principle)
- Overcome conceptual challenges of quantum theory?
 E.g., Parisian zig-zag model

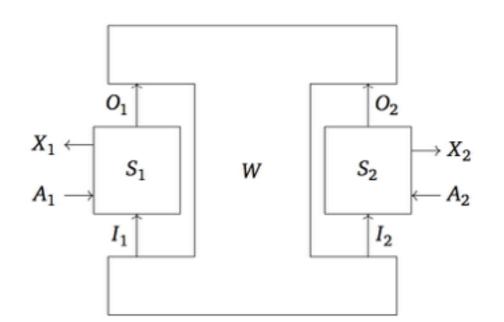
THE PROCESS-MATRIX FRAMEWORK

<u>Assumptions</u>
 i) Isolated parties with single interaction

- ii) For every choice of quantum instruments S_1 , S_2 , probabilities $P(x_1, x_2 | a_1, a_2)$ well defined.
- iii) Probabilities are *linear*in the choice of *instruments*.

THE PROCESS-MATRIX FRAMEWORK

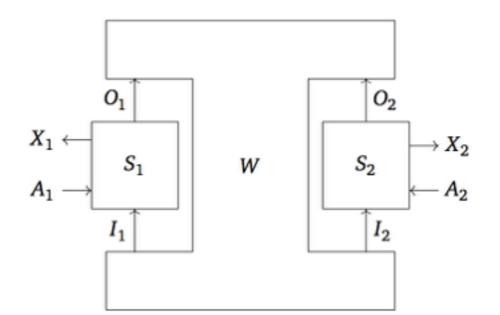
- ► <u>Assumptions</u>
 - i) Isolated parties with single interaction
 - ii) For every choice of quantum instruments S₁, S₂,
 probabilities P(x₁,x₂ | a₁,a₂) well defined.
 - iii) Probabilities are *linear*in the choice of *instruments*.



$$P(x_1, x_2 | a_1, a_2) = \operatorname{Tr}\left((S_1^{x_1, a_1} \otimes S_2^{x_2, a_2}) W \right)$$

THE PROCESS-MATRIX FRAMEWORK

- ► <u>Assumptions</u>
 - i) Isolated parties with single interaction
 - ii) For every choice of quantum instruments S_1 , S_2 , probabilities $P(x_1, x_2 | a_1, a_2)$ well defined.
 - iii) Probabilities are *linear*in the choice of *instruments*.



$$P(x_1, x_2 | a_1, a_2) = \operatorname{Tr}\left((S_1^{x_1, a_1} \otimes S_2^{x_2, a_2}) W \right)$$

The process matrix is a quantum channel!

CAUSAL INEQUALITIES

- Device independent
- Describe the facets of the correlations obtainable in a *causal* way.

► Example:
$$\frac{1}{2} \left[P(x = b | b' = 0) + P(y = a | b' = 1) \right] \le 3/4$$

- The process-matrix framework *allows* for violations of such inequalities!
- <u>Gretchenfrage</u>: Can we realize such violations?!
 Ognyan: with space non-local variables.

CAUSAL INEQUALITIES

► Gretchenfrage: Can we realize violations?!

- Are they "just" a mathematical artifact?
 (similar to the Gretchenfrage on the existence/realizability of closed time-like curves)
- ➤ If it's a mathematical artifact, we better find reasons for that!
- One approach (that failed yet remains actual): Restrict the framework to purifiable process matrices.

Implication: Necessity of "source" *P* and "sink" *F*

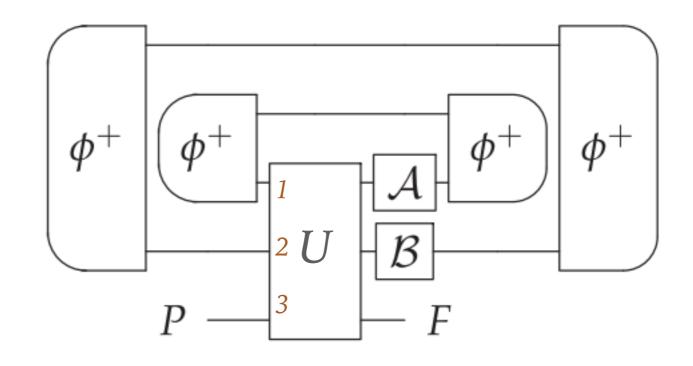
M. Araújo, A. Feix, M. Navascués, Č. Brukner, Quantum 1, 10 (2017).

W

 \hat{P}

CONNECTION TO MATEUS' TALK

Equivalence: Process-matrix framework and *linear* postselected closed time-like curves:

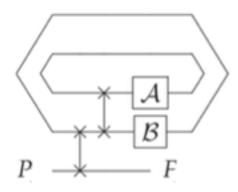


► <u>Induced operations from *P* to *F*: P-CTC: $Tr_{1,2}[(A \otimes B \otimes I)U]/z$ (fragile) Process matrices: $\forall A, B$ unitary: $Tr_{1,2}[(A \otimes B \otimes I)U]$ unitary</u>

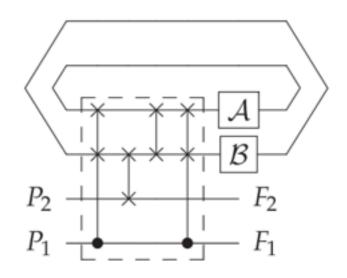
M. Araújo, P. Allard Guérin, ÄB, PRA 96, 52315 (2017).

EXAMPLES

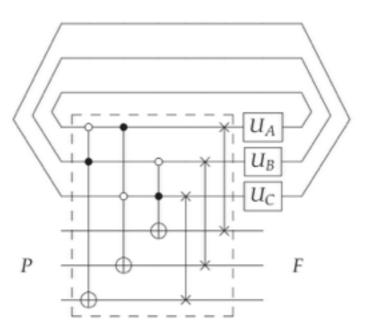
Alice before Bob: BA



Quantum switch



Violation of causal inequality



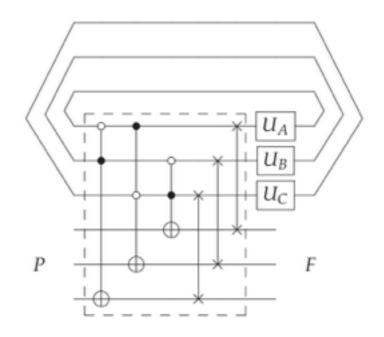
M. Araújo, P. Allard Guérin, ÄB, PRA 96, 52315 (2017).

MAIN QUESTION OF THIS TALK

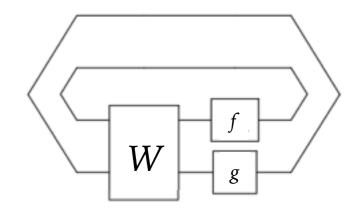
Can we talk about the quantum states within? General believe in P-CTC and two-stateformalism community: no.

Crucial difference: *linearity*.

- ► <u>Motivations to pose this question:</u>
 - Technical challenge; CTCs?
 - It is possible in the *classical* special case
 - Might help to characterize process matrices
 - Distinguish between violating and non-violating processes?
 - Challenge Mateus' challenge presented in his talk: Limits on the computational power



- Violations of causal inequalities is *not* a feature of quantum theory.
- ► With three parties or more: Classical violations possible.
- ► We know which processes are purifiable (can be made reversible)
- (Caution: Superluminal signaling without logical problems!)



 $W: A \times B \to A \times B \text{ is a process iff}$ $\forall f: A \to A, g: B \to B \exists ! (x,y): (x,y) = W(f(x),g(y))$

likewise for more parties.

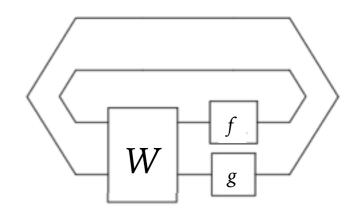
Characterization:

Unique fixed point for every choice of *f*,*g*.

ÄB, S. Wolf, NJP 18, 1 (2016); ÄB, S. Wolf, NJP 18, 3 (2016)

Characterization:

W: $A \times B \rightarrow A \times B$ is a process iff $\forall f: A \rightarrow A, g: B \rightarrow B \exists ! (x,y): (x,y) = W(f(x),g(y))$



likewise for more parties.

► <u>Interpretation</u>:

Given the boundary conditions (*W*,*f*,*g*) states are uniquely determined (fixed point).

No grandfather antinomy (no overdetermination) No information antinomy (no underdetermination)

ÄB, S. Wolf, NJP 18, 1 (2016); ÄB, S. Wolf, NJP 18, 3 (2016)

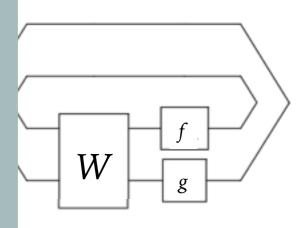
- $\blacktriangleright \frac{\text{Characterizatio}}{W: A \times B \rightarrow A}$
 - $\forall f: A \rightarrow A, g: B$

likewise for mc

Interpretation:
 Given the boun
 determined (fixed pc
 No grandfather
 No information

Three-party	process	(classical)

a,b,c	¬b∧c, ¬c∧a, ¬a∧b
0,0,0	0,0,0
0,0,1	1,0,0
0,1,0	0,0,1
0,1,1	0,0,1
1,0,0	0,1,0
1,0,1	1,0,0
1,1,0	0,1,0
1,1,1	0,0,0



iniquely

h)

ÄB, S. Wolf, NJP 18, 1 (2016); ÄB, S. Wolf, NJP 18, 3 (2016)

► <u>Characterization</u>:

 $W: A \times B \times C \rightarrow A \times B \times C \text{ is a process iff} \qquad P \rightarrow W: A \rightarrow A, g: B \rightarrow B, c \exists ! x, y, z: (x, y, z) = W(f(x), g(y), c)$

likewise for more parties.

► <u>Interpretation</u>:

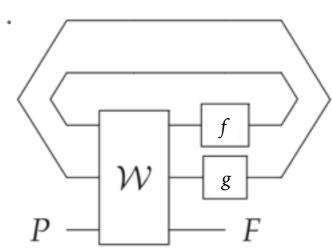
Given the boundary conditions (*W*,*f*,*g*,*c*) states are uniquely determined (fixed point).

 \mathcal{W}

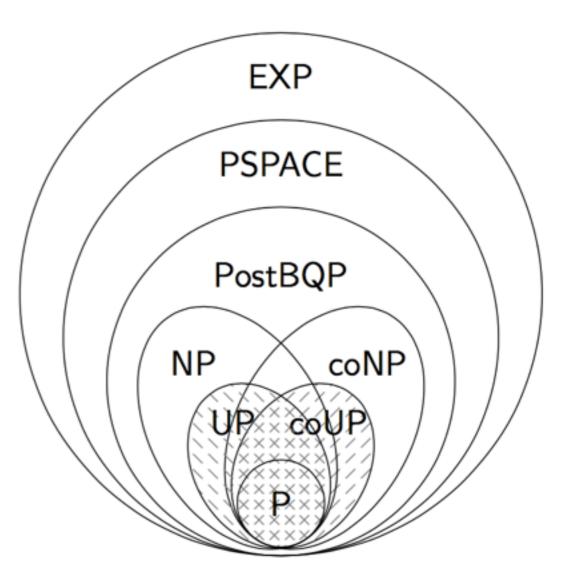
No grandfather antinomy (no overdetermination) No information antinomy (no underdetermination)

INTERMEZZO²: THE CLASSICAL CASE AND COMPUTATION

➤ Helpful to upper bound the computational power of classical deterministic processes to UP ∩ coUP.



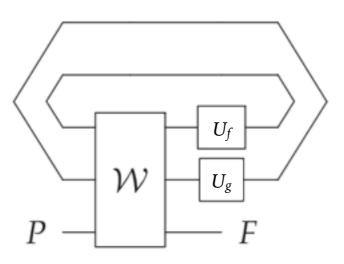
- ► Problems in UP \cap coUP:
 - factoring
 - discrete log
 - parity games (quantum algorithm?)



ÄB, S. Wolf, PRSA 474, 2209 (2018)

BACK TO THE QUANTUM CASE

Is there a *unique quantum* fixed point for every choice of U_f, U_g unitary and input (state at P)?

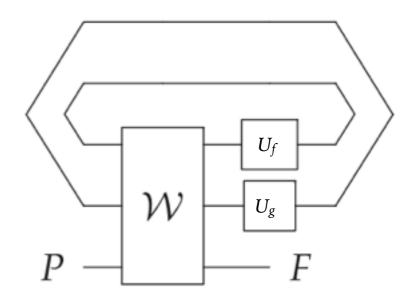


BACK TO THE QUANTUM CASE

Observations:

Fixed points — if they exist — would be entangled with the input on *P*.
(for different inputs there might be different fixed points)

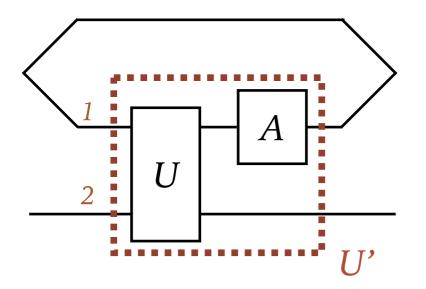
- The process *W* might entangle the input on *P* with the rest!



QUANTUM "FIXED POINTS"

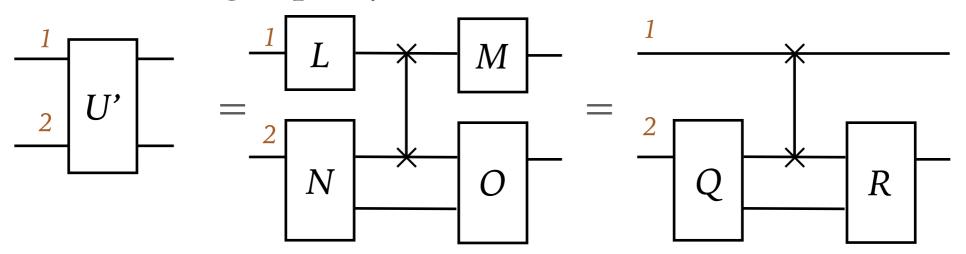
Make use of superposition / entanglement

► <u>Single party:</u>



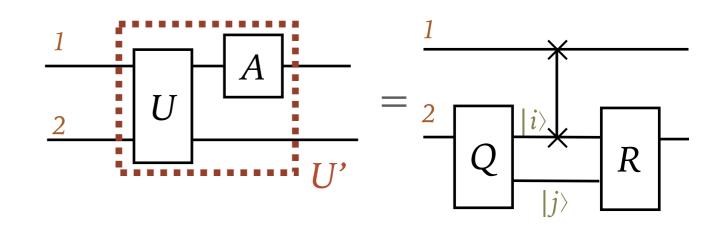
 $= \operatorname{Tr}_1[(A \otimes I)U] = \operatorname{Tr}_1[U']$ unitary

► We know the single-party characterization: States



QUANTUM "FIXED POINTS"

► What is the fixed point?



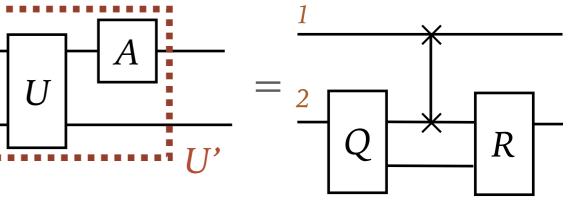
► <u>Ansatz:</u>

There exists a basis $\{|b_{i,j}\rangle\}_{I\times J}$ such that $\forall i,j \in I \times J \quad \exists ! x : U' |x\rangle |b_{i,j}\rangle = |x\rangle |b'_{i,j}\rangle$

Easy to see: $|b_{i,j}\rangle = Q^{\dagger}|i,j\rangle$ and x=i.

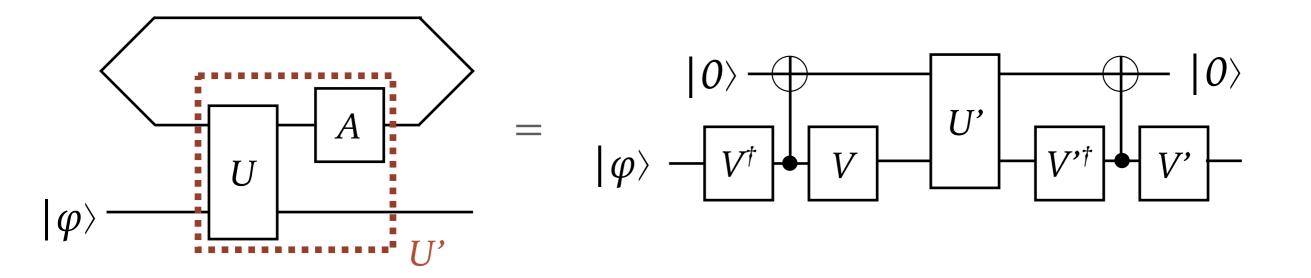
► Description of the evolution $Tr_1[U']$ for a basis $\{|b_{i,j}\rangle\}_{I\times J}$.

► Description of the evolution $\text{Tr}_1[U']$ for a basis: $U'|i\rangle|b_{i,j}\rangle = |i\rangle|b'_{i,j}\rangle$



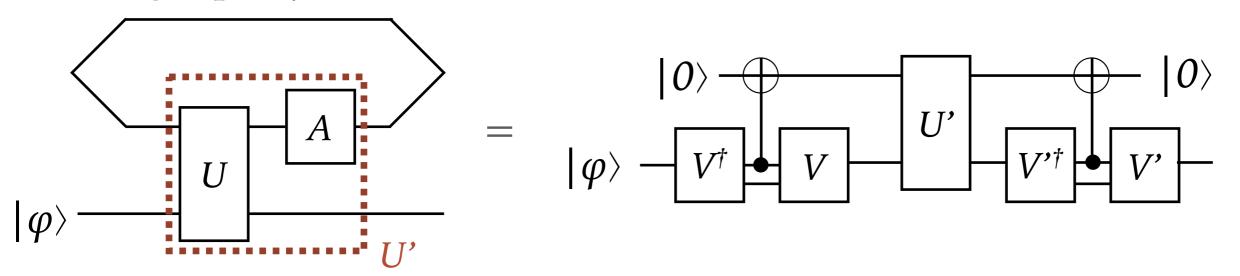
- For a general input $|\varphi\rangle$:
 - 1.) Express in $\{|b_{i,j}\rangle\}_{I\times J}$: $|\varphi\rangle = \sum_{i,j} \beta_{i,j} |b_{i,j}\rangle$
 - 2.) Entangle with respective fixed points: $\sum_{i,j} \beta_{i,j} |i\rangle |b_{i,j}\rangle$
 - 3.) Evolve through *U*': $\sum_{i,j} \beta_{i,j} |i\rangle |b'_{i,j}\rangle$
 - 4.) Disentangle from respective fixed points: $\sum_{i,j} \beta_{i,j} |b'_{i,j}\rangle = \text{Tr}_1[U'] |\varphi\rangle$

► Circuit picture

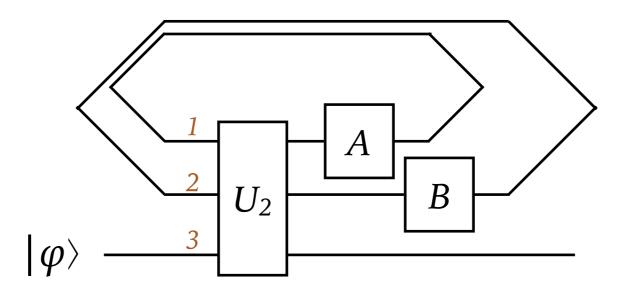


- For a general input $|\varphi\rangle$:
 - 1.) Express in $\{|b_{i,j}\rangle\}_{I\times J}$: $|\varphi\rangle = \sum_{i,j} \beta_{i,j} |b_{i,j}\rangle$
 - 2.) Entangle with respective fixed points: $\sum_{i,j} \beta_{i,j} |i\rangle |b_{i,j}\rangle$
 - 3.) Evolve through *U*': $\sum_{i,j} \beta_{i,j} |i\rangle |b'_{i,j}\rangle$
 - 4.) Disentangle from respective fixed points: $\sum_{i,j} \beta_{i,j} |b'_{i,j}\rangle = \text{Tr}_1[U'] |\varphi\rangle$

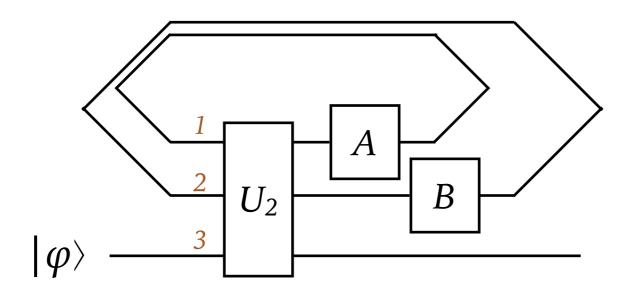
► Single party:



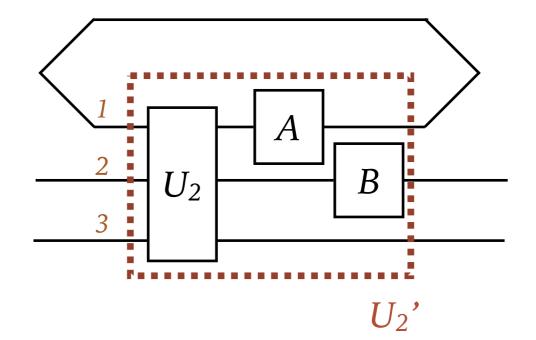
► Two parties: Apply recipe *recursively*.

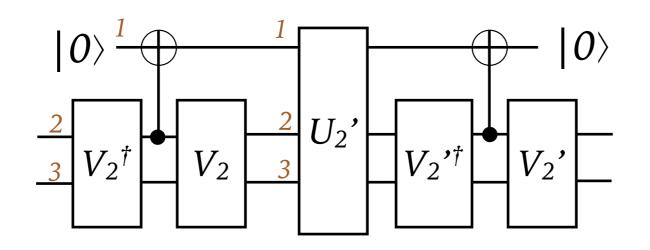


► <u>Recursive application</u>:



 <u>Recursive application:</u>
 1.) Contract Alice's CTC only (Single-party process)

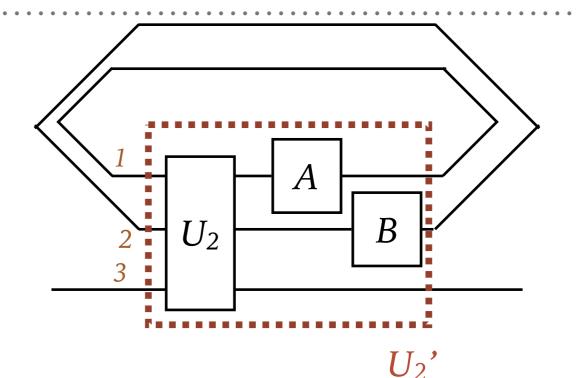


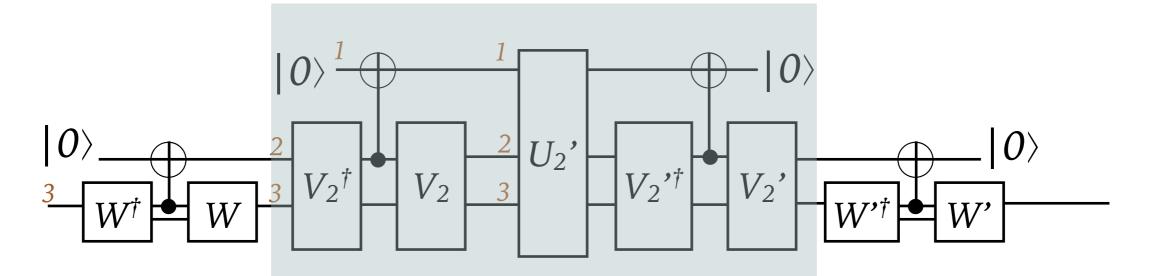


This implements the unitary $Tr_1[U_2']$

 <u>Recursive application:</u>

 Contract Alice's CTC only (Single-party process)
 Contract Bob's CTC (Single-party process)

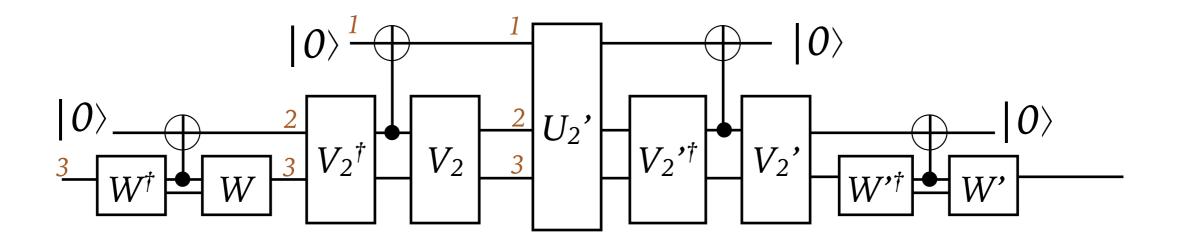




This implements the unitary $Tr_{1,2}[U_2']$

► For more parties:

Continue recursively, contract one by one.

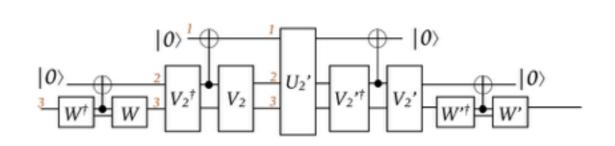


► What do we get?

A state as input to $U_{2'}$ which describes all fixed points.

CHALLENGES

► Digest...



- Closed form instead of recursive application?
- What properties about the process can we read off the fixed points?
 Violations of causal inequalities?
- Simulations / Show computational limitations!
- Describe evolution in CTCs

GRAZIE MILLE

