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Introduction

The framework of classical causal models describes classical random
variables with specified causal relationships between them.

The causal relationships induce constraints on probability distributions.

The framework is useful in many contexts. It enables us to make inferences
about causal structure in cases where we have observed data, but the causal
structure is unknown.

This in turn enables us to make deductions about what will happen in
alternative scenarios, e.g., if | intervene and fix a variable to have the value
that | want, what happens to the other variables? It also enables a rigorous
account of counterfactual statements.

The main aim of this talk is to describe a framework for quantum causal
models.



Assume finitely-valued random variables and finite dimensional Hilbert spaces throughout!



The classical notion of
common cause



Reichenbach’s principle
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Y, Z are classical random variables.
Suppose they are correlated, i.e., P(YZ) = P(Y) P(Z).

Then: one variable is a cause of the other, or there is a common cause, or both:
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Reichenbach’s principle

This one’s special, because in this case,

_______ the principle also implies a constraint on
the probabilities

NNNNNN

Y, Z are classical random variables.
Suppose they are correlated, i.e., P(YZ) = P(Y) P(Z).

Then: one variable is a cause of the other, or there is a common cause, or both:



Reichenbach’s principle

If X is a complete common cause of Y and Z, and Y is not a cause of Z and Z is
not a cause of Y, then:

Y and Z are conditionally independent given X :
PYZ|X)=P(Y|X)P(Z|X)



Reichenbach’s principle

If X is a complete common cause of Y and Z, and Y is not a cause of Z and Z is
not a cause of Y, then:

are conditionally indepen
P(YZ|X)= P(Y|X)P(Z| X)

given X .
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Dilation to functions

Suppose that a more complete description is possible in terms of hidden, or latent,
variables A, /1 .

Suppose that Y = fy(4, X) Z = f,(u, X)

i.e., Y and Z are functions of earlier variables, and
A 7 Y does not depend on u and Z does not depend on 4.

In this situation we will say that X is the complete common cause of Y and Z.

Suppose further that P(/lX,u) = P(A)P(X)P(,u) :
Then P(YZ|X) = P(Y| X)P(Z| X).



Dilation to functions

This goes in the other direction too. Hence:

Theorem

Given a conditional distribution, P(YZ| X), the following are equivalent:

(i) It is possible to define random variables A, pu, and functions fy, f, such that
Y= fy(4 X), Z= f;(n, X), and P(AXu) = P(A)P(X)P(u) .

(i) PYZ| X) = P(Y| X)P(Z| X)




The quantum notion of
common cause



Suppose that we take the causal situation to be
as shown.

What do the arrows mean?

Following the classical discussion, we expect the
arrows to be telling us, that A is (in some sense)
a complete common cause of B and C.

Suppose that there is some quantum channel
from A to BC.

We should then expect that “A is the complete
common cause of B and C” places a constraint on
this channel, analogous to the classical
factorisation of P(YZ]|X).




Suppose that we take the causal situation to be
as shown.

What do the arrows mean?
Following the classical discussion, we expect the

arrows to be telling us, that A is (in some sense)
a complete common cause of B and C.

Suppose that there is some quantum channel
from A to BC.

We should then expect that “A is the complete
common cause of B and C” places a constraint on
this channel, analogous to the classical
factorisation of P(YZ]|X).

ldea: Assume an underlying unitary transformation



Notation:

Consider a quantum channel, with input A and output B, corresponding to a CP
map E:

pp=E (PA) :
Let the Choi-Jamiotkowski-isomorphic operator be given by:

pria = D E(i)alil) @ [i) -Gl

Pp|4 is a positive operator, with TrB<pB|A> =1,

Definition: C | |D

For a generic bipartite unitary U: U say that B does not influence C if:
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« forall inputs p 4, the marginal p is independent of pp
- equivalently, Trp prp 45 = Pcia ® 1p




Definition:

Given a unitary U:

say that A is the complete common cause of B and C if:

U does not influence B
A does not influence C




Theorem (.-m. aten, et al., PRX 7, 031021 (2017)) :

Given ppc 4, the following are equivalent:

(i) there exists a unitary dilation of p BC|A? with latent systems A and u, such

that A is the complete common cause of B and C, and Piay = P, Rps & P

(i) PBC|A = PB|APC|A
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PBC|A = PB|APC|A




Causal models



Classical causal models

A directed acyclic graph A set of conditional
with random variables on probabilities: For each i,
nodes: P(X, ‘ Pa,)

@ Joint distribution:
° e P(X,...X,) =TI, P(X,| Pa)

Pa; denotes the parents of X, that is the set of nodes X, such that there is an
arrow from X, to X..



Quantum causal models

A directed acyclic graph. * Aset of channels:
Each node is associated with a Px|po € B(H; Qcp, H)

Hilbert space H; ® H*

such that for all i,j | Px|pa > Px|pal =0
i i J J

« Form a process operator by taking the
product of these channel operators.

« E.g., for the graph on the left:

0= Pxx,Px;| XX, Pxol X, PX,

- Ingeneral, c € B(Q®, (H, ® H))).



See JB, R. Lorenz, O. Oreshkov, arXlv:1906.10726 for the full justification of the
quantum definition.
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Independence and causal
structure



In classical causal models, the structure of the DAG places constraints on the joint
probability distribution in the form of conditional independences.

Definition:

Consider a DAG G. Let S, T and U be disjoint subsets of nodes of G. A path from S to T is an
undirected path in the DAG, which starts on an S node and ends on a T node. A path from S
to T is blocked by U if any of the following hold:

(i) The path contains a fork at a node in U.

(i1) The path contains a traversal at a node in U.

(ii1) The path contains a collider at a node which is not in U, and which does not have any
descendants in U.

Say that S and T are d-separated by U if all paths from S to T are blocked by U.

Theorem (see, e.g., Pearl, Causality):

d-separation is sound and complete for P(ST|U) = P(S|U) P(T|U).



Independence in quantum process operators

Reminder: Given three random variables, X,Y,Z, the following are equivalent ways of
defining “Y and Z are conditionally independent given X”:

P(YZ|X) = P(Y|X) P(Z|X)
I(Y:Z1X) = 0

P(XYZ) P(X) = P(YX) P(ZX)

P(XYZ) = a(YX)P(ZX) , for real valued functions a and f.

Definition: Given a quantum process operator Og7(/ say that S and T are strongly
independent relative to U if 6gp; = agy Pry. for Hermitian operators « and f.

Implied operational statement:

There exists a (global) intervention at the U nodes, such that for any interventions at S,
T, the outcomes at S and T are conditionally independent given the outcome at U.



Theorem (JB, R. Lorenz, O. Oreshkov, arXlv:1906.10726):

Consider a quantum causal model, with DAG G, and process operator O

Suppose that S, T, U are disjoint subsets of nodes, and let R be all nodes not in S, T,U.

Then:

For all local interventions at the R
nodes,

S and T are d-separated by U :

S and T are strongly
independent relative to U




Conclusions

Following a close look at the notions of common cause and independence, we have
given a definition for quantum causal models, and the quantum version of a central
result from the classical framework: that d-separation implies conditional
independence.

See arXlv:1906.10726 for many other results, including full justification of the
quantum definition, classical split node models and a quantum generalisation of
Pearl’s do-calculus.



More foundational and/or speculative
remarks

The classical formalism has a natural interpretation, wherein causal structure is
explained in terms of underlying functional relationships between variables. The
functional relationships are taken to be facts about the world (ontic). Probabilities
arise when an agent does not know the values of all variables, hence expresses
degrees of belief with a probability distribution (epistemic).

The existence of a compelling quantum analogue to the classical formalism, with
unitaries replacing functions, lends support to the view that the unitaries (and the
causal structure they define) are ontic, and that the positive operators are epistemic.

But the positive operators express ... information about what?

The quantum formalism uses split nodes (two Hilbert spaces per node). A split node
classical formalism can also be written down, more closely analogous to the quantum
case than the traditional classical formalism. Is there a successful quantum formalism
involving only a single Hilbert space per node? If not, why not?



