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Bounding the sets of classical and 
quantum correlations in networks

A. Pozas-Kerstjens et al., to appear in PRL
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Scalar extension
The method is only applicable to networks in which there are factorization 
constraints among observed variables, such as entanglement swapping.
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Scalar extension
Example: ! = 1, %&%', (&(', ⟨%& ⟩%'
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Scalar extension
Example: ! = 1, %&%', (&(', ⟨%& ⟩%'

+' = +,
+- = +.
/0 = /1
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Quantum inflation: a general approach 
to quantum causal compatibility

E. Wolfe et al., to appear
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Classical inflation
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Wolfe, Spekkens & Fritz, arXiv:1609.00672 
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Classical inflation
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Problem: information broadcasting!!Wolfe, Spekkens & Fritz, arXiv:1609.00672 
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Quantum inflation
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Quantum inflation
• Projection rules

• Commutation rules

• Symmetry under permutation of indices

• Consistency with the observed probabilities
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Quantum inflation
• Projection rules

• Commutation rules

• Symmetry under permutation of indices

• Consistency with the observed probabilities

All these conditions can be imposed with non-commutative polynomial optimization.
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Results
• Inflation: incompatibility of GHZ and W distribution with the triangle, including 

noise robustness.
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Results
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• Inflation: incompatibility of GHZ and W distribution with the triangle, including 
noise robustness.

• Inflation: Mermin < 4 for the quantum triangle. Impossible for methods that do 
not make a difference between quantum and supra-quantum theories.
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Results
• Inflation: incompatibility of GHZ and W distribution with the triangle, including 

noise robustness.

• Inflation: Mermin < 4 for the quantum triangle. Impossible for methods that do 
not make a difference between quantum and supra-quantum theories.

• Inflation + scalar: known quantum (both) and classical (scalar) violations for 
entanglement swapping..
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Activation phenomena in networks
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Entanglement ≠ Nonlocality
Werner: there exist entangled states that do not violate any Bell inequality.
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Entanglement ≠ Nonlocality
Werner: there exist entangled states that do not violate any Bell inequality.
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• Consider a bipartite state ! that does not violate any Bell inequality.

Networks reveal non-locality
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• Consider a bipartite state ! that does not violate any Bell inequality.

• Make a network out of many copies of the state.

• If the network state !"“=” !⨂" violates an N-partite Bell inequality, the state 
! must be non-local.  

Cavalcanti, Almeida, Scarani, Acin, Nature Comm. 2, 184 (2011) 

Networks reveal non-locality
!
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• All bipartite states with one-way distillable entanglement are non-local.

Cavalcanti, Almeida, Scarani, Acin, Nature Comm. 2, 184 (2011) 

Networks reveal non-locality
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• All bipartite states with one-way distillable entanglement are non-local.

• Activation: we provided a tripartite state ! that does not violate any Bell inequality 
for genuine tripartite non-locality but such that !⨂# does it for large $.

Cavalcanti, Almeida, Scarani, Acin, Nature Comm. 2, 184 (2011) 

Networks reveal non-locality
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• All bipartite states with one-way distillable entanglement are non-local.

• Activation: we provided a tripartite state ! that does not violate any Bell inequality 
for genuine tripartite non-locality but such that !⨂# does it for large $.

• Non-locality of Werner state for % < 0.68 in a star network with $ > 21. In the 
limit when $ → ∞, one has % → 0.64.

Cavalcanti, Almeida, Scarani, Acin, Nature Comm. 2, 184 (2011) 

Networks reveal non-locality
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• Palazuelos: there exist local entangled states !"# such that !"#⨂% violates a Bell 
inequality for large &. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012) 

Activation of non-locality
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• Palazuelos: there exist local entangled states !"# such that !"#⨂% violates a Bell 
inequality for large &. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012) 

• This result can also be interpreted in the network picture.

Activation of non-locality
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• Palazuelos: there exist local entangled states !"# such that !"#⨂% violates a Bell 
inequality for large &. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012) 

• This result can also be interpreted in the network picture.

• We improved over Palazuelos’ result showing that it applies to all states with singlet 
fidelity larger tan ⁄1 ). For isotropic states, this coincides with the separability 
bound. Cavalcanti, Acin, Brunner, Vertesi, PRA 87, 042104 (2013) 

Activation of non-locality
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New activation phenomena
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New activation phenomena

! = 0,1

& = 0,1
CHSH Box

' = 0,1
(-CHSH Box

(

) = 0,1,2,3

No-input box

, = 0,1, ∅

.

No Bell violation is posible with these measuring devices.

( ≤ ⁄1 2
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New activation phenomena

! = 0,1

& = 0,1 ' = 0,1

(
) = 0,1,2,3 , = 0,1, ∅

.

It is possible to violate bilocality with these boxes. Conjecture: valid for all ( > 0.

To do so, we derive a method to bound the set of classical and quantum 
correlations in these networks through semi-definite programming.

.
( ≤ ⁄1 2

A. Pozas-Kerstjens et al., arXiv:1904.08943 
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New DI entanglement detection
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For any entangled state & one one can construct a Bell inequality

+, = ∑/012345678 !$')|"%(* such that:

• +, < 0 for some 8 !$')|"%(* =tr Π0|4⨂Π1|5⨂Π2|6⨂Π3|7Φ⨂&⨂Φ

• +, ≥ 0 for all 8 !$')|"%(* =tr Π0|4⨂Π1|5⨂Π2|6⨂Π3|7Φ⨂&A⨂Φ

Bowles, Supic, Cavalcanti, Acin, Phys. Rev. Lett. 121, 180503 (2018)
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among observed variables.

• Inflation method: systematic method to study quantum causality.

• Both methods apply to classical networks when all measurements commute.
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arbitrary networks. 

• Problem 2: identify networks with a large classical vs quantum separation.

• Problem 3: use these gaps for quantum information purposes.
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Conclusions
• Scalar method: simple and applicable to networks with independence constraints 

among observed variables.

• Inflation method: systematic method to study quantum causality.

• Both methods apply to classical networks when all measurements commute.

• Question: does quantum inflation asymptotically converge?

• Problem 1: construct tools to characterise classical and quantum correlations in 
arbitrary networks. 

• Problem 2: identify networks with a large classical vs quantum separation.

• Problem 3: use these gaps for quantum information purposes.

• Important: small quantum networks are within reach with present technology.
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Are you interested in these topics?

We are looking for PhD students and post-docs.
https://jobs.icfo.eu/

Join us!!

https://jobs.icfo.eu/

