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Classical correlations: correlations established by classical means.

p(al,...,aN|x1,.. E p |x1, ) D(aN|xN,)L)

These are the standard “EPR” correlations. Independently of fundamental issues, these
are the correlations achievable by classical resources. Bell inequalities define the limits
on these correlations.
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Quantum correlations: correlations established by quantum means.

p(al,...,aN|x1,...,xN) = <‘P|M;? @...@M;zvv

)
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Everything is expressed in terms of operators (the quantum state and the
measurement projectors) acting on a Hilbert space.
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Quantum Correlations

Navascués, Pironio, Acin, PRL 2007, NJP 2009
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Characterizing quantum correlations

Given p(a,b|x,y), does it have a quantum realization?

6y)= (WM @MW) M=
MM = 6,M;

p(a,b

Example:

pla,b)0,0)= pla,b0,1)= pla,b[1,0)= %(2 +32-3.2-3.2+3)

pla,b1,1)=(0.245,0.255,0.255,0.245)

Previous work by Tsirelson



ICFO'
NPA in a nutshell

?
p(ablxy) = (PIMgu My |¥)  [Mgp Ty | =0



ICFO'
NPA in a nutshell

?
p(ablxy) = (PIMgu My |¥)  [Mgp Ty | =0

Idea: assume you had the state ¥ and measurements Il ,and Iy, producing the
correlations.

Then, for any set of operators made of products of the measurements operators, X, the
matrix y with elements y;; = (‘P|X;FX]-|‘P) is positive semi-definite.
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Can one find values for the unknown terms involving non-commuting local
measurements, €.8. ¥4 5 o' |x'» such that y = 07 If not, the correlations are not quantum.

This can be answered through SDP.

Step n in the hierarchy is defined by the set of products of n measurement operators.
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NPA hierarchy

Given a probability distribution p(a,b|x,y), we have defined a hierarchy consisting
of a series of tests based on semi-definite programming techniques allowing the
detection of supra-quantum correlations.

R
1NO 1NO 1NO

The hierarchy is asymptotically convergent.
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Quantum correlations

Every step in the hierarchy defines a convex set that is included in the previous step.
Convergence is provably attained asymptotically.

In many situations convergence is attained after a few steps. But there is evidence that
there may be situations that require an infinite number of steps.
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Example:
pla,50,0)= pla,5[0,1)= pla, b[1,0)= %(2 +32-43.2-3.2+3)
pla,blL1)=(0.245,0.255,0.255,0.245)

Solution: it is not quantum, that is, there exists no quantum state of two particles and
local measurements acting on them that produce these correlations.

The experimental observation of these correlations would imply the failure of
guantum physics, as Bell violations did for classical physics.
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Beyond Bell’s scenario
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Popescu: there exist entangled states p that do not violate any Bell inequality, but
that can be mapped by LOCC into a state o that does it.
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Hidden non-locality

Popescu: there exist entangled states p that do not violate any Bell inequality, but

that can be mapped by LOCC into a state o that does it.

Important: the settings for the Bell test should be decided after the LOCC protocol.
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Bilocality
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Branciard, Gisin, Pironio, Phys. Rev. Lett.. 2, 184 (2011)

p(abc|xyz) = tr(Ha|x®l—[b|y®nc|leABl ®pB2 C)

p(abc|xyz) = X, p(A) p(a|Ax)p(b|Ay) p(clAz)



ICFO

Bilocality
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Branciard, Gisin, Pironio, Phys. Rev. Lett.. 2, 184 (2011)

p(abc|xyz) = tr(Ha|x®l—[b|y®nc|leABl ®pB2 C)

p(abc|xyz) = X, p(A) p(a|Ax)p(b|Ay) p(clAz)

p(abclxyz) = X5, p(Dp(w) plalix)p(blAny) p(cluz)
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Main question: understand the causes that could be behind the observed
correlations among a set of random variables.
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Main question: understand the causes that could be behind the observed
correlations among a set of random variables.

Given two correlated variables, either direct causation is possible.

But even more intricate causation patterns could explain the correlations.
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Representation of causality patterns through directed acyiclic graphs. Observed variables
are represented by circles, hidden variables by squares and causes by directed edges.
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Representation of causality patterns through directed acyiclic graphs. Observed variables
are represented by circles, hidden variables by squares and causes by directed edges.

Bell setups can be understood in this language. Fritz, NJP’12; Wood & Spekkens, NJP ‘15
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Generalized Bell scenarios have a natural interpretation in the causal-network scenario.
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Generalized Bell scenarios have a natural interpretation in the causal-network scenario.

Hidden @ @ e e
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Quantum causality

Bell’s theorem: nonlocal correlations can be explained by a quantum causal model, but
not by the classical counterpart.
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Quantum causality

Bell’s theorem: nonlocal correlations can be explained by a quantum causal model, but
not by the classical counterpart.

p(a,blx, y)
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How is causality affected by
guantum information?
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Make use of this freedom to design stronger “Bell” tests.
Challenge: the sets of correlations are not convex!
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